Influence of exercise on dilatation of the basilar artery during diabetes mellitus

William G. Mayhan, Hong Sun, Jill F. Mayhan, Kaushik P. Patel

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Our goal was to examine whether exercise training alleviates impaired nitric oxide synthase (NOS)-dependent dilatation of the basilar artery in Type 1 diabetic rats. To test this hypothesis, we measured in vivo diameter of the basilar artery in sedentary and exercised nondiabetic and diabetic rats in response to NOS-dependent (acetylcholine) and -independent (nitroglycerin) agonists. To determine the potential role for nitric oxide in vasodilatation in sedentary and exercised nondiabetic and diabetic rats, we examined responses after NG-monomethyl-L-arginine (L-NMMA). We found that acetylcholine produced dilatation of the basilar artery that was similar in sedentary and exercised nondiabetic rats. Acetylcholine produced only minimal vasodilatation in sedentary diabetic rats. However, exercise alleviated impaired acetylcholine-induced vasodilatation in diabetic rats. Nitroglycerin produced dilatation of the basilar artery that was similar in sedentary and exercised nondiabetic and diabetic rats. L-NMMA produced similar inhibition of acetylcholine-induced dilatation of the basilar artery in sedentary and exercised nondiabetic and diabetic rats. Finally, we found that endothelial NOS (eNOS) protein in the basilar artery was higher in diabetic compared with nondiabetic rats and that exercise increased eNOS protein in the basilar artery of nondiabetic and diabetic rats. We conclude that 1) exercise can alleviate impaired NOS-dependent dilatation of the basilar artery during diabetes mellitus, 2) the synthesis and release of nitric oxide accounts for dilatation of the basilar artery to acetylcholine in sedentary and exercised nondiabetic and diabetic rats, and 3) exercise may exert its affect on cerebrovascular reactivity during diabetes by altering levels of eNOS protein in the basilar artery.

Original languageEnglish (US)
Pages (from-to)1730-1737
Number of pages8
JournalJournal of Applied Physiology
Volume96
Issue number5
DOIs
StatePublished - May 2004

Keywords

  • Acetylcholine
  • Endothelial nitric oxide synthase protein
  • N-monomethyl-L-arginine
  • Nitric oxide
  • Nitroglycerin
  • Rats

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Influence of exercise on dilatation of the basilar artery during diabetes mellitus'. Together they form a unique fingerprint.

Cite this