Infrared-active phonon modes in single-crystal thorium dioxide and uranium dioxide

Sean Knight, Rafał Korlacki, Christina Dugan, James C. Petrosky, Alyssa Mock, Peter A. Dowben, J. Matthew Mann, Martin M. Kimani, Mathias Schubert

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


The infrared-active phonon modes, in single-crystal samples of thorium dioxide (ThO 2) and uranium dioxide (UO 2), were investigated using spectroscopic ellipsometry and compared with density functional theory. Both ThO 2 and UO 2 are found to have one infrared-active phonon mode pair [consisting of one transverse optic (TO) and one associated longitudinal optic (LO) mode], which is responsible for the dominant features in the ellipsometric data. At room temperature, our results for the mode pair's resonant frequencies and broadening parameters are comparable with previous reflectance spectroscopy characterizations and density functional theory predictions. For ThO 2, our ellipsometry and density function theory results both show that the LO mode broadening parameter is larger than the TO mode broadening. This signifies mode anharmonicity, which can be attributed to the intrinsic phonon-phonon interaction. In addition to the main mode pair, a broad low-amplitude impurity-like vibrational mode pair is detected within the reststrahlen band for both ThO 2 and UO 2. Elevated temperature measurements were performed for ThO 2 in order to study the mechanisms by which the phonon parameters evolve with increased heat. The observed change in the TO resonant frequency is in excellent agreement with previous density functional calculations, which only consider volume expansion of the crystal lattice. This suggests that the temperature-dependent change in the TO frequency is primarily due to volume expansion. The change in the main mode pair's broadening parameters is nearly linear within the temperature range of this study, which indicates the intrinsic anharmonic scattering (via cubic anharmonicities) as the main decay mechanism.

Original languageEnglish (US)
Article number125103
JournalJournal of Applied Physics
Issue number12
StatePublished - Mar 31 2020

ASJC Scopus subject areas

  • General Physics and Astronomy


Dive into the research topics of 'Infrared-active phonon modes in single-crystal thorium dioxide and uranium dioxide'. Together they form a unique fingerprint.

Cite this