Integral projection models show exotic thistle is more limited than native thistle by ambient competition and herbivory

Brigitte Tenhumberg, Tomomi Suwa, Andrew J. Tyre, F. Leland Russell, Svata M. Louda

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

Both competitors and natural enemies can limit plant population growth. However, demographic comparisons of the effects of these interactions on introduced versus co-occurring, related native species are uncommon. We asked: (1) does plant competition, insect herbivory, or their combination reduce population growth rate, log λ, of the Eurasian thistle Cirsium vulgare sufficiently to explain its limited invasiveness in western tallgrass prairie; and (2) how do the effects of these interactions compare to those for C. altissimum, its co-occurring, synchronously-flowering native congener? We developed integral projection models (IPMs) to estimate log λ for both species, using parameter estimates from field experiments. Our models predicted that the growth potential (growth rate at minimal competition and herbivory) for the introduced thistle (log λ = 3.5 (2.5, 4.6)) was twice as large as for the native thistle (log λ = 1.6 (0.4, 3.1)); however, a high level of competition and ambient insect herbivory together reduced log λ to similar values for both thistle species (C. vulgare: log λ = -1.3 (-2.4, -0.3) vs C. altissimum: log λ = -0.9 (-1.4, -0.3)). This suggests that the introduced thistle was more affected by competition and insect herbivory. For the introduced thistle, neither competition nor insect herbivory alone led to negative log λ. In contrast, for the native thistle, high competition alone also led to negative population growth (log λ = -0.8, percentile limits do not overlap with zero). Ambient herbivory alone prevented the spread for both thistle species (percentile limits include zero). Overall, the results show that interspecific competition followed by ambient levels of insect herbivory strongly constrained log λ for both thistles, limiting C. vulgare invasiveness and C. altissimum abundance. The outcome highlights the importance of synergy between the two biological interactions in limiting plant population growth. Improved understanding of mechanisms limiting log λ for weedy plants enhances our ability to predict when biotic resistance will contribute to invasive plant species management.

Original languageEnglish (US)
Article number69
JournalEcosphere
Volume6
Issue number4
DOIs
StatePublished - Apr 1 2015

    Fingerprint

Keywords

  • Biotic resistance
  • Cirsium altissimum
  • Cirsium vulgare
  • Congeneric species
  • Enemy release hypothesis
  • Exotic species
  • Integral projection model
  • Invasive plants
  • Nebraska
  • Population growth rate
  • Thistle

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Cite this