Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells

Yong Wang, Yuanyuan Zhou, Taiyang Zhang, Ming Gang Ju, Lin Zhang, Miao Kan, Yihui Li, Xiao Cheng Zeng, Nitin P. Padture, Yixin Zhao

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Efficient charge collection is critical in large area (quasi-) planar configuration perovskite solar cells (PSCs) as the cell operation relies on the diffusion of photo-generated charge carriers to charge collector layers. Many defects/traps in the polycrystalline perovskite absorber layer strongly affect the charge collection efficiency because the 2D-like top charge collection layer barely penetrates into the 3D grain boundaries in the perovskite layer to efficiently collect the charge carrier. Inspired by blood capillaries for efficient mass exchange, a charge-collection nano-network for efficient charge collection was incorporated into the perovskite absorber using low-cost, stable amino-functionalized graphene (G-NH2). The integration of such an unprecedented structure enables very efficient charge collection, leading to the significant enhancement of the power conversion efficiency of 1 × 1 cm2 MAPbI3 PSCs from 14.4 to 18.7% with higher reproducibility, smaller hysteresis and enhanced stability. The physicochemical mechanisms underlying the role of this nano charge-collection nano-network in boosting the charge collection in PSCs are elucidated comprehensively, using a combined experimental and theoretical approach, pointing to a new direction towards up-scaling of high-efficiency PSCs.

Original languageEnglish (US)
Pages (from-to)868-873
Number of pages6
JournalMaterials Horizons
Volume5
Issue number5
DOIs
StatePublished - Sep 2018

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Process Chemistry and Technology
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells'. Together they form a unique fingerprint.

Cite this