Interlocked catenane-like structure predicted in Au 24(SR) 20: Implication to structural evolution of thiolated gold clusters from homoleptic gold(I) thiolates to core-stacked nanoparticles

Yong Pei, Rhitankar Pal, Chunyan Liu, Yi Gao, Zhuhua Zhang, Xiao Cheng Zeng

Research output: Contribution to journalArticlepeer-review

125 Scopus citations

Abstract

Atomic structure of a recently synthesized ligand-covered cluster Au 24(SR) 20 [J. Phys. Chem. Lett., 2010, 1, 1003] is resolved based on the developed classical force-field based divide-and-protect approach. The computed UV-vis absorption spectrum and powder X-ray diffraction (XRD) curve for the lowest-energy isomer are in good agreement with experimental measurements. Unique catenane-like staple motifs are predicted for the first time in core-stacked thiolate-group (RS-) covered gold nanoparticles (RS-AuNPs), suggesting the onset of structural transformation in RS-AuNPs at relatively low Au/SR ratio. Since the lowest-energy structure of Au 24(SR) 20 entails interlocked Au 5(SR) 4 and Au 7(SR) 6 oligomers, it supports a recently proposed growth model of RS-AuNPs [J. Phys. Chem. Lett., 2011, 2, 990], that is, Au n(SR) n-1 oligomers are formed during the initial growth of RS-AuNPs. By comparing the Au-core structure of Au 24(SR) 20 with other structurally resolved RS-AuNPs, we conclude that the tetrahedral Au 4 motif is a prevalent structural unit for small-sized RS-AuNPs with relatively low Au/SR ratio. The structural prediction of Au 24(SR) 20 offers additional insights into the structural evolution of thiolated gold clusters from homoleptic gold(I) thiolate to core-stacked RS-AuNPs. Specifically, with the increase of interfacial bond length of Au(core)-S in RS-AuNPs, increasingly larger "metallic" Au-core is formed, which results in smaller HOMO-LUMO (or optical) gap. Calculations of electronic structures and UV-vis absorption spectra of Au 24(SR) 20 and larger RS-AuNPs (up to ∼2 nm in size) show that the ligand layer can strongly affect optical absorption behavior of RS-AuNPs.

Original languageEnglish (US)
Pages (from-to)3015-3024
Number of pages10
JournalJournal of the American Chemical Society
Volume134
Issue number6
DOIs
StatePublished - Feb 15 2012
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Interlocked catenane-like structure predicted in Au 24(SR) 20: Implication to structural evolution of thiolated gold clusters from homoleptic gold(I) thiolates to core-stacked nanoparticles'. Together they form a unique fingerprint.

Cite this