TY - JOUR
T1 - Irrigated corn yield and soil phosphorus response to long-term phosphorus fertilization
AU - Balboa, Guillermo Raul
AU - Ferguson, Richard
AU - Puntel, Laila
N1 - Publisher Copyright:
© 2024 The Author(s). Agronomy Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy.
PY - 2024/9/1
Y1 - 2024/9/1
N2 - Long-term experiments can help to understand soil phosphorus (P) dynamics and improve nutrient management strategies. This research evaluated long-term (2002–2021) soil P dynamics and yield response to a range of P fertilizer rates in a continuous high-yielding irrigated corn (Zea mays L.) experiment with low initial soil phosphorus test (SPT, 10.5 mg kg−1). The experiment was established near Clay Center, NE, and five P rates (0, 10, 20, 39, and 59 kg P ha−1) were evaluated. Soil samples at 20-cm depth were collected in eight cropping seasons. Yield response to P fertilizer increased after 20 years from 0.64 to 2.79 Mg ha−1. The application of 39 kg P ha−1 year−1 increased soil Bray-1 P to 19.5 mg kg−1, outyielded all other P treatments, and resulted in a positive relative P balance. Over 20 years, 0 kg P ha−1 year−1 decreased Bray-1 P from 10.5 to 5.5 mg kg−1. Annual P rates of 0, 10, and 20 kg P ha−1 produced a negative relative P balance and SPT below the critical soil test value (CSTV). The CSTV was 22.2 mg kg−1 for a continuous irrigated corn cropping system. A 53% increase in the P fertilizer rate (from 39 to 59 kg P ha−1 year−1) produced a threefold increment in the soil test P build-up rate. High-yielding irrigated continuous corn production systems (>14 Mg ha−1) are required to apply at least 39 kg P ha−1 year−1 to maintain SPT and a positive relative P balance over years.
AB - Long-term experiments can help to understand soil phosphorus (P) dynamics and improve nutrient management strategies. This research evaluated long-term (2002–2021) soil P dynamics and yield response to a range of P fertilizer rates in a continuous high-yielding irrigated corn (Zea mays L.) experiment with low initial soil phosphorus test (SPT, 10.5 mg kg−1). The experiment was established near Clay Center, NE, and five P rates (0, 10, 20, 39, and 59 kg P ha−1) were evaluated. Soil samples at 20-cm depth were collected in eight cropping seasons. Yield response to P fertilizer increased after 20 years from 0.64 to 2.79 Mg ha−1. The application of 39 kg P ha−1 year−1 increased soil Bray-1 P to 19.5 mg kg−1, outyielded all other P treatments, and resulted in a positive relative P balance. Over 20 years, 0 kg P ha−1 year−1 decreased Bray-1 P from 10.5 to 5.5 mg kg−1. Annual P rates of 0, 10, and 20 kg P ha−1 produced a negative relative P balance and SPT below the critical soil test value (CSTV). The CSTV was 22.2 mg kg−1 for a continuous irrigated corn cropping system. A 53% increase in the P fertilizer rate (from 39 to 59 kg P ha−1 year−1) produced a threefold increment in the soil test P build-up rate. High-yielding irrigated continuous corn production systems (>14 Mg ha−1) are required to apply at least 39 kg P ha−1 year−1 to maintain SPT and a positive relative P balance over years.
UR - http://www.scopus.com/inward/record.url?scp=85199398811&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85199398811&partnerID=8YFLogxK
U2 - 10.1002/agj2.21650
DO - 10.1002/agj2.21650
M3 - Article
AN - SCOPUS:85199398811
SN - 0002-1962
VL - 116
SP - 2588
EP - 2598
JO - Agronomy Journal
JF - Agronomy Journal
IS - 5
ER -