TY - CHAP
T1 - Isolation, characterization and differentiation of mouse cardiac progenitor cells
AU - Yadav, Santosh Kumar
AU - Mishra, Paras Kumar
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018
Y1 - 2018
N2 - Despite several strategies developed for replenishing the dead myocardium after myocardial infarction (MI), stem cell therapy remains the leading method to regenerate new myocardium. Although induced pluripotent stem cells (iPS) and transdifferentiation of the differentiated cells have been used as novel approaches for myocardial regeneration, these approaches did not yield very successful results for myocardial regeneration in in vivo studies. Asynchronous contractility of newly formed cardiomyocytes with the existing cardiomyocytes is the most important issue with iPS approach, while very low yield of transdifferentiated cardiomyocytes and their less chances to beat in the same rhythm as existing cardiomyocytes in the MI heart are important caveats with transdifferentiation approach. CSCs are present in the heart and they have the potential to differentiate into myocardial cells. However, the number of resident CSCs is very low. Therefore, it is important to get maximum yield of CSCs during isolation process from the heart. Increasing the number of CSCs and initiating their differentiation ex vivo are crucial for CSC-based stem cell therapy. Here, we present a better method for isolation, characterization and differentiation of CSCs from the mouse heart. We also demonstrated morphological changes in the CSCs after 2 days, 3 days, and 7 days in maintenance medium and a separate group of CSCs cultured for 12 days in differentiation medium using Phase-Contrast microscopy. We have used different markers for identification of CSCs isolated from the mouse heart such as marker for mouse CSC, Sca-1, cardiac-specific markers NKX2–5, MEF2C, GATA4, and stemness markers OCT4 and SOX2. To characterize the differentiated CSCs, we used CSCs maintained in differentiation medium for 12 days. To evaluate differentiation of CSCs, we determined the expression of cardiomyocyte-specific markers actinin and troponin I. Overall; we described an elegant method for isolation, identification, differentiation and characterization of CSCs from the mouse heart.
AB - Despite several strategies developed for replenishing the dead myocardium after myocardial infarction (MI), stem cell therapy remains the leading method to regenerate new myocardium. Although induced pluripotent stem cells (iPS) and transdifferentiation of the differentiated cells have been used as novel approaches for myocardial regeneration, these approaches did not yield very successful results for myocardial regeneration in in vivo studies. Asynchronous contractility of newly formed cardiomyocytes with the existing cardiomyocytes is the most important issue with iPS approach, while very low yield of transdifferentiated cardiomyocytes and their less chances to beat in the same rhythm as existing cardiomyocytes in the MI heart are important caveats with transdifferentiation approach. CSCs are present in the heart and they have the potential to differentiate into myocardial cells. However, the number of resident CSCs is very low. Therefore, it is important to get maximum yield of CSCs during isolation process from the heart. Increasing the number of CSCs and initiating their differentiation ex vivo are crucial for CSC-based stem cell therapy. Here, we present a better method for isolation, characterization and differentiation of CSCs from the mouse heart. We also demonstrated morphological changes in the CSCs after 2 days, 3 days, and 7 days in maintenance medium and a separate group of CSCs cultured for 12 days in differentiation medium using Phase-Contrast microscopy. We have used different markers for identification of CSCs isolated from the mouse heart such as marker for mouse CSC, Sca-1, cardiac-specific markers NKX2–5, MEF2C, GATA4, and stemness markers OCT4 and SOX2. To characterize the differentiated CSCs, we used CSCs maintained in differentiation medium for 12 days. To evaluate differentiation of CSCs, we determined the expression of cardiomyocyte-specific markers actinin and troponin I. Overall; we described an elegant method for isolation, identification, differentiation and characterization of CSCs from the mouse heart.
KW - Actinin
KW - CSC characterization
KW - CSC differentiation
KW - Cardiac stem cells
KW - Sca-1
KW - Troponin I
UR - http://www.scopus.com/inward/record.url?scp=85053081399&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053081399&partnerID=8YFLogxK
U2 - 10.1007/978-1-4939-8697-2_12
DO - 10.1007/978-1-4939-8697-2_12
M3 - Chapter
C2 - 30196409
AN - SCOPUS:85053081399
T3 - Methods in Molecular Biology
SP - 183
EP - 191
BT - Methods in Molecular Biology
PB - Humana Press Inc.
ER -