TY - JOUR
T1 - K-mer-Based Motif Analysis in Insect Species across Anopheles, Drosophila, and Glossina Genera and Its Application to Species Classification
AU - Cserhati, Matyas
AU - Xiao, Peng
AU - Guda, Chittibabu
N1 - Publisher Copyright:
© 2019 Matyas Cserhati et al.
PY - 2019
Y1 - 2019
N2 - Short k-mer sequences from DNA are both conserved and diverged across species owing to their functional significance in speciation, which enables their use in many species classification algorithms. In the present study, we developed a methodology to analyze the DNA k-mers of whole genome, 5′ UTR, intron, and 3′ UTR regions from 58 insect species belonging to three genera of Diptera that include Anopheles, Drosophila, and Glossina. We developed an improved algorithm to predict and score k-mers based on a scheme that normalizes k-mer scores in different genomic subregions. This algorithm takes advantage of the information content of the whole genome as opposed to other algorithms or studies that analyze only a small group of genes. Our algorithm uses k-mers of lengths 7-9 bp for the whole genome, 5′ and 3′ UTR regions as well as the intronic regions. Taxonomical relationships based on the whole-genome k-mer signatures showed that species of the three genera clustered together quite visibly. We also improved the scoring and filtering of these k-mers for accurate species identification. The whole-genome k-mer content correlation algorithm showed that species within a single genus correlated tightly with each other as compared to other genera. The genomes of two Aedes and one Culex species were also analyzed to demonstrate how newly sequenced species can be classified using the algorithm. Furthermore, working with several dozen species has enabled us to assign a whole-genome k-mer signature for each of the 58 Dipteran species by making all-to-all pairwise comparison of the k-mer content. These signatures were used to compare the similarity between species and to identify clusters of species displaying similar signatures.
AB - Short k-mer sequences from DNA are both conserved and diverged across species owing to their functional significance in speciation, which enables their use in many species classification algorithms. In the present study, we developed a methodology to analyze the DNA k-mers of whole genome, 5′ UTR, intron, and 3′ UTR regions from 58 insect species belonging to three genera of Diptera that include Anopheles, Drosophila, and Glossina. We developed an improved algorithm to predict and score k-mers based on a scheme that normalizes k-mer scores in different genomic subregions. This algorithm takes advantage of the information content of the whole genome as opposed to other algorithms or studies that analyze only a small group of genes. Our algorithm uses k-mers of lengths 7-9 bp for the whole genome, 5′ and 3′ UTR regions as well as the intronic regions. Taxonomical relationships based on the whole-genome k-mer signatures showed that species of the three genera clustered together quite visibly. We also improved the scoring and filtering of these k-mers for accurate species identification. The whole-genome k-mer content correlation algorithm showed that species within a single genus correlated tightly with each other as compared to other genera. The genomes of two Aedes and one Culex species were also analyzed to demonstrate how newly sequenced species can be classified using the algorithm. Furthermore, working with several dozen species has enabled us to assign a whole-genome k-mer signature for each of the 58 Dipteran species by making all-to-all pairwise comparison of the k-mer content. These signatures were used to compare the similarity between species and to identify clusters of species displaying similar signatures.
UR - http://www.scopus.com/inward/record.url?scp=85075663920&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075663920&partnerID=8YFLogxK
U2 - 10.1155/2019/4259479
DO - 10.1155/2019/4259479
M3 - Article
C2 - 31827584
AN - SCOPUS:85075663920
SN - 1748-670X
VL - 2019
JO - Computational and Mathematical Methods in Medicine
JF - Computational and Mathematical Methods in Medicine
M1 - 4259479
ER -