TY - JOUR
T1 - KBU2046 exerts inhibition on chemokine gradient-mediated motility of esophageal squamous cell carcinoma through reducing integrin expression
AU - Li, Kexin
AU - Chen, Jinxia
AU - Li, Wendi
AU - Zhang, Zhenzhen
AU - Xue, Yongxian
AU - Zheng, Yang
AU - Zhang, Ying
AU - Zhang, Cong
AU - Bergan, Raymond
AU - Zhao, Lianmei
N1 - Publisher Copyright:
© 2025
PY - 2025/6
Y1 - 2025/6
N2 - Esophageal squamous cell carcinoma (ESCC) cells migrate from their initial site of origin, ultimately forming metastasis and causing death. The selective inhibition of ESCC cell movement has not been possible to date. Here we demonstrate that the small molecule therapeutic agent KBU2046 inhibits the characteristic migration and invasion of ESCC cells induced by chemokine gradients, having no effect on cell proliferation. After demonstrating that KBU2046 inhibits human ESCC metastasis in a murine model, we showed that it doesn't inhibit the in vitro efficacy of chemotherapeutic agents used clinically, going on to demonstrate maintenance of cisplatin efficacy when combined with KBU2046 in a murine model. Mechanistic studies demonstrated that KBU2046 inhibited epidermal growth factor (EGF)-mediated phosphorylation of receptor-interacting serine/threonine protein kinase 1 (RIPK1) on its Ser166 activation motif. RIPK1 was shown to be necessary for KBU2046 efficacy. However, this was shown to be dependent upon cell context, and was also shown to be dependent upon level of RIPK1 expression, both supporting the presence of additional therapeutically sensitive regulatory pathways. Mass spectrometry analysis of ESCC cells demonstrated that KBU2046 selectively altered the expression of proteins involved in cell motility. Integrin αV (ITGAV) is overexpressed in ESCC, was decreased by KBU2046, and its knockdown inhibited ESCC cell migration and invasion, which was necessary for KBU2046 efficacy. We demonstrate that ESCC's motility can be inhibited, and KBU2046 inhibits motility in an Integrin αV-dependent manner, and that combining anti-motility and cytotoxic agents is a high valuable therapeutic strategy for ESCC that should be further developed.
AB - Esophageal squamous cell carcinoma (ESCC) cells migrate from their initial site of origin, ultimately forming metastasis and causing death. The selective inhibition of ESCC cell movement has not been possible to date. Here we demonstrate that the small molecule therapeutic agent KBU2046 inhibits the characteristic migration and invasion of ESCC cells induced by chemokine gradients, having no effect on cell proliferation. After demonstrating that KBU2046 inhibits human ESCC metastasis in a murine model, we showed that it doesn't inhibit the in vitro efficacy of chemotherapeutic agents used clinically, going on to demonstrate maintenance of cisplatin efficacy when combined with KBU2046 in a murine model. Mechanistic studies demonstrated that KBU2046 inhibited epidermal growth factor (EGF)-mediated phosphorylation of receptor-interacting serine/threonine protein kinase 1 (RIPK1) on its Ser166 activation motif. RIPK1 was shown to be necessary for KBU2046 efficacy. However, this was shown to be dependent upon cell context, and was also shown to be dependent upon level of RIPK1 expression, both supporting the presence of additional therapeutically sensitive regulatory pathways. Mass spectrometry analysis of ESCC cells demonstrated that KBU2046 selectively altered the expression of proteins involved in cell motility. Integrin αV (ITGAV) is overexpressed in ESCC, was decreased by KBU2046, and its knockdown inhibited ESCC cell migration and invasion, which was necessary for KBU2046 efficacy. We demonstrate that ESCC's motility can be inhibited, and KBU2046 inhibits motility in an Integrin αV-dependent manner, and that combining anti-motility and cytotoxic agents is a high valuable therapeutic strategy for ESCC that should be further developed.
KW - Cell mobility
KW - ESCC
KW - Integrin family proteins
KW - KBU2046
KW - RIPK1 pathway
UR - http://www.scopus.com/inward/record.url?scp=105001022768&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105001022768&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2025.167800
DO - 10.1016/j.bbadis.2025.167800
M3 - Article
C2 - 40118292
AN - SCOPUS:105001022768
SN - 0925-4439
VL - 1871
JO - Biochimica et Biophysica Acta - Molecular Basis of Disease
JF - Biochimica et Biophysica Acta - Molecular Basis of Disease
IS - 5
M1 - 167800
ER -