Kinetics of enzymatic hydrolysis revealed by video rate AFM single molecule analysis

Bo Song, Ning Xi, Zhiyong Sun, Ruiguo Yang, Liangliang Chen, Zhanxin Zhou, Yongliang Yang, Wenjian Du, Jun Xi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The rapid growing bio-refining industry is hindered by the slow reaction rate of cellobiohydrolase catalyzed hydrolysis. Analysis of the mechanism of enzyme interaction in the cellobiohydrolase catalyzed hydrolysis is difficult because of the variety factors affecting the enzymatic reaction rate. In this study, we evaluated the processive hydrolysis parameters in the molecular level using a video rate atomic force microscopy (AFM). Both dissociate and association rates (koff and kon) have been calculated by an experimental data fitted Michaelis-Menten model and real-time observation experimental data. The difference in these two association rates suggested that the cellulose substrate governs the hydrolysis rate and that can deepen the understanding of the mechanisms of processive hydrolysis.

Original languageEnglish (US)
Title of host publicationIEEE-NANO 2015 - 15th International Conference on Nanotechnology
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1288-1291
Number of pages4
ISBN (Electronic)9781467381550
DOIs
StatePublished - 2015
Externally publishedYes
Event15th IEEE International Conference on Nanotechnology, IEEE-NANO 2015 - Rome, Italy
Duration: Jul 27 2015Jul 30 2015

Publication series

NameIEEE-NANO 2015 - 15th International Conference on Nanotechnology

Other

Other15th IEEE International Conference on Nanotechnology, IEEE-NANO 2015
Country/TerritoryItaly
CityRome
Period7/27/157/30/15

ASJC Scopus subject areas

  • Process Chemistry and Technology
  • Electrical and Electronic Engineering
  • Ceramics and Composites
  • Electronic, Optical and Magnetic Materials
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Kinetics of enzymatic hydrolysis revealed by video rate AFM single molecule analysis'. Together they form a unique fingerprint.

Cite this