Lactate wastewater dark fermentation: The effect of temperature and initial pH on biohydrogen production and microbial community

Rami M.M. Ziara, Daniel N. Miller, Jeyamkondan Subbiah, Bruce I. Dvorak

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

Biohydrogen production using dark fermentation (hydrolysis and acidogenesis) is one of the ways to recover energy from lactate wastewater from the food-processing industry, which has high organic matter. Dark fermentation can be affected by the temperature, pH and the microbial community structure. This study investigated the effects of temperature and initial pH on the biohydrogen production and the microbial community from a lactate wastewater using dark fermentation. Biohydrogen production was successful only at lower temperature levels (35 and 45 °C) and initial pH 6.5, 7.5 and 8.5. The highest hydrogen yield (0.85 mol H 2 /mol lactate consumed) was achieved at 45 °C and initial pH 8.5. The COD reduction achieved by fermenting the lactate wastewater at 35 °C ranged between 21 and 30% with the maximum COD reduction at pH 8.5, and at 45 °C, the COD reduction ranged between 12 and 21%, with the maximum at pH 7.5. At 35 °C, the lactate degradation ranged between 54 and 95%, while at 45 °C, it ranged between 77 and 99.8%. 16S rRNA sequencing revealed that at 35 °C, bacteria from the Clostridium genera were the most abundant at the end of the fermentation in the reactors that produced hydrogen, while at 45 °C Sporanaerobacter, Clostridium and Pseudomonas were the most abundant.

Original languageEnglish (US)
Pages (from-to)661-673
Number of pages13
JournalInternational Journal of Hydrogen Energy
Volume44
Issue number2
DOIs
StatePublished - Jan 8 2019

Keywords

  • 16S rRNA
  • Biohydrogen
  • Dark fermentation
  • Lactate wastewater
  • Microbial structure

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Lactate wastewater dark fermentation: The effect of temperature and initial pH on biohydrogen production and microbial community'. Together they form a unique fingerprint.

Cite this