Abstract
Prediction of protein loop conformations without any prior knowledge (ab initio prediction) is an unsolved problem. Its solution will significantly impact protein homology and template-based modeling as well as ab initio protein-structure prediction. Here, we developed a coarse-grained, optimized scoring function for initial sampling and ranking of loop decoys. The resulting decoys are then further optimized in backbone and side-chain conformations and ranked by all-atom energy scoring functions. The final integrated technique called loop prediction by energy-assisted protocol achieved a median value of 2.1 Å root mean square deviation (RMSD) for 325 12-residue test loops and 2.0 Å RMSD for 45 12-residue loops from critical assessment of structure-prediction techniques (CASP) 10 target proteins with native core structures (backbone and side chains). If all side-chain conformations in protein cores were predicted in the absence of the target loop, loop-prediction accuracy only reduces slightly (0.2 Å difference in RMSD for 12-residue loops in the CASP target proteins). The accuracy obtained is about 1 Å RMSD or more improvement over other methods we tested. The executable file for a Linux system is freely available for academic users at http://sparks-lab.org.
Original language | English (US) |
---|---|
Pages (from-to) | 335-341 |
Number of pages | 7 |
Journal | Journal of Computational Chemistry |
Volume | 35 |
Issue number | 4 |
DOIs | |
State | Published - Feb 5 2014 |
Keywords
- loop modeling • coarse-grained energy function • energy minimization • Monte Carlo simulation • force field development
ASJC Scopus subject areas
- General Chemistry
- Computational Mathematics