Location coding by opponent neural populations in the auditory cortex

G. Christopher Stecker, Ian A. Harrington, John C. Middlebrooks

Research output: Contribution to journalArticle

187 Scopus citations

Abstract

Although the auditory cortex plays a necessary role in sound localization, physiological investigations in the cortex reveal inhomogeneous sampling of auditory space that is difficult to reconcile with localization behavior under the assumption of local spatial coding. Most neurons respond maximally to sounds located far to the left or right side, with few neurons tuned to the frontal midline. Paradoxically, psychophysical studies show optimal spatial acuity across the frontal midline. In this paper, we revisit the problem of inhomogeneous spatial sampling in three fields of cat auditory cortex. In each field, we confirm that neural responses tend to be greatest for lateral positions, but show the greatest modulation for near-midline source locations. Moreover, identification of source locations based on cortical responses shows sharp discrimination of left from right but relatively inaccurate discrimination of locations within each half of space. Motivated by these findings, we explore an opponent-process theory in which sound-source locations are represented by differences in the activity of two broadly tuned channels formed by contra- and ipsilaterally preferring neurons. Finally, we demonstrate a simple model, based on spike-count differences across cortical populations, that provides bias-free, level-invariant localization - and thus also a solution to the "binding problem" of associating spatial information with other nonspatial attributes of sounds.

Original languageEnglish (US)
Pages (from-to)520-528
Number of pages9
JournalPLoS biology
Volume3
Issue number3
DOIs
StatePublished - Mar 2005

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'Location coding by opponent neural populations in the auditory cortex'. Together they form a unique fingerprint.

Cite this