Location of disulfide bonds within the sequence of human serum cholinesterase

O. Lockridge, S. Adkins, B. N. La Du

Research output: Contribution to journalArticle

81 Scopus citations

Abstract

Human serum cholinesterase was digested with pepsin under conditions which left disulfide bonds intact. Peptides were isolated by high pressure liquid chromatography, and those containing disulfide bonds were identified by a color assay. Peptides were characterized by amino acid sequencing and composition analysis. Human serum cholinesterase contains 8 half-cystines in each subunit of 574 amino acids. Six of these form three internal disulfide bridges: between Cys65-Cys92, Cys252-Cys263, and Cys400-Cys519. A disulfide bond with Cys65 rather than Cys66 was inferred by homology with Torpedo acetylcholinesterase. Cys571 forms a disulfide bridge with Cys571 of an identical subunit. This interchain disulfide bridge is four amino acids from the carboxyl terminus. A peptide containing the interchain disulfide is readily cleaved from cholinesterase by trypsin (Lockridge, O., and La Du, B.N. (1982) J. Biol. Chem. 257, 12012-12018), suggesting that the carboxyl terminus is near the surface of the globular tetrameric protein. The disulfide bridges in human cholinesterase have exactly the same location as in Torpedo californica acetylcholinesterase. There is one potential free sulfhydryl in human cholinesterase at Cys66, but this sulfhydryl could not be alkylated. Comparison of human cholinesterase, and Torpedo and Drosophila acetylcholinesterases to the serine proteases suggests that the cholinesterases constitute a separate family of serin esterases, distinct from the trypsin family and from subtilisin.

Original languageEnglish (US)
Pages (from-to)12945-12952
Number of pages8
JournalJournal of Biological Chemistry
Volume262
Issue number27
StatePublished - 1987
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Location of disulfide bonds within the sequence of human serum cholinesterase'. Together they form a unique fingerprint.

  • Cite this