Machine learning and similarity network approaches to support automatic classification of Parkinson's diseases using accelerometer-based gait analysis

Elham Rastegari, Sasan Azizian, Hesham Ali

Research output: Chapter in Book/Report/Conference proceedingConference contribution

41 Scopus citations

Abstract

Parkinson's Disease is a worldwide health problem, causing movement disorder and gait deficiencies. Automatic noninvasive techniques for Parkinson's disease diagnosis is appreciated by patients, clinicians and neuroscientists. Gait offers many advantages compared to other biometrics specifically when data is collected using wearable devices; data collection can be performed through inexpensive technologies, remotely, and continuously. In this study, a new set of gait features associated with Parkinson's Disease are introduced and extracted from accelerometer data. Then, we used a feature selection technique called maximum information gain minimum correlation (MIGMC). Using MIGMC, features are first reduced based on Information Gain method and then through Pearson correlation analysis and Tukey post-hoc multiple comparison test. The ability of several machine learning methods, including Support Vector Machine, Random Forest, AdaBoost, Bagging, and Naïve Bayes are investigated across different feature sets. Similarity Network analysis is also performed to validate our optimal feature set obtained using MIGMC technique. The effect of feature standardization is also investigated. Results indicates that standardization could improve all classifiers' performance. In addition, the feature set obtained using MIGMC provided the highest classification performance. It is shown that our results from Similarity Network analysis are consistent with our results from the classification task, emphasizing on the importance of choosing an optimal set of gait features to help objective assessment and automatic diagnosis of Parkinson's disease. Results illustrate that ensemble methods and specifically boosting classifiers had better performances than other classifiers. In summary, our preliminary results support the potential benefit of accelerometers as an objective tool for diagnostic purposes in PD.

Original languageEnglish (US)
Title of host publicationProceedings of the 52nd Annual Hawaii International Conference on System Sciences, HICSS 2019
EditorsTung X. Bui
PublisherIEEE Computer Society
Pages4231-4242
Number of pages12
ISBN (Electronic)9780998133126
StatePublished - 2019
Event52nd Annual Hawaii International Conference on System Sciences, HICSS 2019 - Maui, United States
Duration: Jan 8 2019Jan 11 2019

Publication series

NameProceedings of the Annual Hawaii International Conference on System Sciences
Volume2019-January
ISSN (Print)1530-1605

Conference

Conference52nd Annual Hawaii International Conference on System Sciences, HICSS 2019
Country/TerritoryUnited States
CityMaui
Period1/8/191/11/19

Keywords

  • Feature selection
  • Gait Parameters
  • Geriatrics
  • Machine learning
  • Parkinson's Disease

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Machine learning and similarity network approaches to support automatic classification of Parkinson's diseases using accelerometer-based gait analysis'. Together they form a unique fingerprint.

Cite this