Machine learning-based predictive modeling of postpartum depression

Dayeon Shin, Kyung Ju Lee, Temidayo Adeluwa, Junguk Hur

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Postpartum depression is a serious health issue beyond the mental health problems that affect mothers after childbirth. There are no predictive tools available to screen postpartum depression that also allow early interventions. We aimed to develop predictive models for postpartum depression using machine learning (ML) approaches. We performed a retrospective cohort study using data from the Pregnancy Risk Assessment Monitoring System 2012–2013 with 28,755 records (3339 postpartum depression and 25,416 normal cases). The imbalance between the two groups was addressed by a balanced resampling using both random down-sampling and the synthetic minority over-sampling technique. Nine different ML algorithms, including random forest (RF), stochastic gradient boosting, support vector machines (SVM), recursive partitioning and regression trees, naïve Bayes, k-nearest neighbor (kNN), logistic regression, and neural network, were employed with 10-fold cross-validation to evaluate the models. The overall classification accuracies of the nine models ranged from 0.650 (kNN) to 0.791 (RF). The RF method achieved the highest area under the receiver-operating-characteristic curve (AUC) value of 0.884, followed by SVM, which achieved the second-best performance with an AUC value of 0.864. Predictive modeling developed using ML-approaches may thus be used as a prediction (screening) tool for postpartum depression in future studies.

Original languageEnglish (US)
Article number2899
Pages (from-to)1-14
Number of pages14
JournalJournal of Clinical Medicine
Issue number9
StatePublished - Sep 2020
Externally publishedYes


  • Machine learning
  • Postpartum depression
  • Predictive modeling
  • Pregnancy Risk Assessment Monitoring System (PRAMS)

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Machine learning-based predictive modeling of postpartum depression'. Together they form a unique fingerprint.

Cite this