Magnetic domain observation on melt-spun Nd-Fe-B ribbons using magnetic force microscopy

A. Gavrin, C. Sellers, S. H. Liou

Research output: Contribution to journalConference articlepeer-review


We have used Magnetic Force Microscopy (MFM) to study the magnetic domain structures of melt-spun Nd-Fe-B ribbons. The ribbons are commercial products (Magnequench International, Inc. MQP-B and MQP-B+) with a thickness of approximately 20 microns. These materials have identical composition, Nd12.18B5.36Fe76.99Co5.46, but differ in quenching conditions. In order to study the distribution of domain sizes through the ribbon thickness, we have prepared cross-sectional samples in epoxy mounts. In order to avoid artifacts due to tip-sample interactions, we have used high coercivity CoPt coated MFM tips. Our studies show domain sizes typically ranging from 50-200 nm in diameter. This is in agreement with studies of similar materials in which domains were investigated in the plane of the ribbon. We also find that these products differ substantially in mean domain size and in the uniformity of the domain sizes as measured across the ribbon. While the B+ material shows nearly uniform domain sizes throughout the cross section, the B material shows considerably larger domains on one surface, followed by a region in which the domains are smaller than average. This structure is presumably due to the differing quench conditions. The region of coarse domains varies in thickness, disappearing in some areas, and reaching a maximum thickness of 2.75 μm in others. We also describe bulk magnetic measurements, and suggest that the uniformity of the B+ domain structure is responsible for its superior magnetic performance.

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Magnetic domain observation on melt-spun Nd-Fe-B ribbons using magnetic force microscopy'. Together they form a unique fingerprint.

Cite this