Magnetism of new metastable cobalt-nitride compounds

Balamurugan Balasubramanian, Xin Zhao, Shah R. Valloppilly, Sumit Beniwal, Ralph Skomski, Anandakumar Sarella, Yunlong Jin, Xingzhong Li, Xiaoshan Xu, Huibo Cao, Haohan Wang, Axel Enders, Cai Zhuang Wang, Kai Ming Ho, David J. Sellmyer

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ m-3 or 10.1 Mergs per cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies.

Original languageEnglish (US)
Pages (from-to)13011-13021
Number of pages11
Issue number27
StatePublished - Jul 21 2018

ASJC Scopus subject areas

  • Materials Science(all)


Dive into the research topics of 'Magnetism of new metastable cobalt-nitride compounds'. Together they form a unique fingerprint.

Cite this