Mechanical characterization of the decellularized porcine small intestinal submucosa extracellular matrix

Shijia Zhao, Linxia Gu, James M. Hammel, Haili Lang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, the decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM), obtained from the commercial product under the trade name of CorMatrix, were tested in uniaxial tension. Preconditioning under cyclic loading of 2 N was conducted to stabilize the mechanical response of the tissue. The influence of rehydration time on the mechanical properties of the tissue was evaluated. Results suggested that the stiffness of SIS-ECM decreased with longer rehydration time. Considering the application of CorMatrix in pericardial closure, the native pericardium samples were also tested. The comparison indicated that the native pericardium is softer than rehydrated CorMatrix. This work can facilitate the surgeons to better choose the appropriate rehydration time when conducting the extracardiac implantations, such as pericardial reconstruction, pericardial closure, etc.

Original languageEnglish (US)
Title of host publicationBiomedical and Biotechnology Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856215
DOIs
StatePublished - 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume3 A

Conference

ConferenceASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Mechanical characterization of the decellularized porcine small intestinal submucosa extracellular matrix'. Together they form a unique fingerprint.

Cite this