Mechanistic insights into the acetate-accelerated synthesis of crystalline ceria nanoparticles

Tamra J. Fisher, Deepa Choudhry, Kaitlynn Derr, Soodabeh Azadehranjbar, Dan Stasko, Chin Li Cheung

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Recent increasing uses of ceria in research and industrial applications have fostered continuing developments of efficient routes to synthesize the material. Here we report our investigation of the effects and the mechanistic roles of lithium acetate to accelerate the growth of crystalline ceria nanoparticles in ozone-mediated synthesis. By increasing the mole ratio of the acetate to cerium nitrate in the reactions, the reaction yields of ceria nanoparticles were observed to increase fromca.10% to up to over 90% by cerium content in 30 min reactions. Microscopy images and Raman spectra of the as-synthesized nanoparticles revealed that increasing the acetate additions led to a decrease in average particle size and size range but an increase in crystallinity. Through analyzing the organic by-products in the reaction mixtures, the acetate was inferred to base-catalyze the formation of acetals and cerium complexes and accelerate the formation of Ce-O-Ce bonds and hence the growth of ceria nanoparticles through alcohol-like condensation reactions.

Original languageEnglish (US)
Pages (from-to)20515-20520
Number of pages6
JournalRSC Advances
Issue number35
StatePublished - May 29 2020

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)


Dive into the research topics of 'Mechanistic insights into the acetate-accelerated synthesis of crystalline ceria nanoparticles'. Together they form a unique fingerprint.

Cite this