TY - JOUR
T1 - Melanocytes do not migrate directionally in physiological DC electric fields
AU - Grahn, Jennifer C.
AU - Reilly, Debra A.
AU - Nuccitelli, Richard L.
AU - Isseroff, Rivkah R.
PY - 2003/1
Y1 - 2003/1
N2 - Wounding skin generates an endogenous electric field of 100-200 mV/mm in the immediate vicinity of the wound. When keratinocytes are exposed to direct current electric fields of this magnitude, they exhibit galvanotaxis, or directional migration toward the cathode, suggesting that wound-generated electric fields provide migrational cues that contribute to wound healing. Because melanocytes must also migrate into the healing wound to repigment it, their motility in response to electric fields of physiologic magnitude was examined. Human skin-derived melanocytes, either exposed to 100 mV/mm direct current electric fields or nonexposed controls, both exhibited motility rates of 9 μm/hour, significantly (three- to five-fold) lower than the motility rates of keratinocytes under identical conditions. However, in sharp contrast to keratinocytes, melanocytes exhibited no directional migration in the electric field. Additionally, neither the number of primary dendrites per cell, nor the orientation of the dendrites with respect to the field vector, nor the average length of the dendrites was significantly different in melanocytes exposed to the electric field as compared to nonexposed controls. Thus, in marked contrast to keratinocytes, human skin-derived melanocytes do not respond to direct current electric fields of physiologic magnitude with either directional migration or reorientation of dendrites. This may account for the delay in repigmentation that often accompanies wound reepithelialization.
AB - Wounding skin generates an endogenous electric field of 100-200 mV/mm in the immediate vicinity of the wound. When keratinocytes are exposed to direct current electric fields of this magnitude, they exhibit galvanotaxis, or directional migration toward the cathode, suggesting that wound-generated electric fields provide migrational cues that contribute to wound healing. Because melanocytes must also migrate into the healing wound to repigment it, their motility in response to electric fields of physiologic magnitude was examined. Human skin-derived melanocytes, either exposed to 100 mV/mm direct current electric fields or nonexposed controls, both exhibited motility rates of 9 μm/hour, significantly (three- to five-fold) lower than the motility rates of keratinocytes under identical conditions. However, in sharp contrast to keratinocytes, melanocytes exhibited no directional migration in the electric field. Additionally, neither the number of primary dendrites per cell, nor the orientation of the dendrites with respect to the field vector, nor the average length of the dendrites was significantly different in melanocytes exposed to the electric field as compared to nonexposed controls. Thus, in marked contrast to keratinocytes, human skin-derived melanocytes do not respond to direct current electric fields of physiologic magnitude with either directional migration or reorientation of dendrites. This may account for the delay in repigmentation that often accompanies wound reepithelialization.
UR - http://www.scopus.com/inward/record.url?scp=0037284938&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037284938&partnerID=8YFLogxK
U2 - 10.1046/j.1524-475X.2003.11110.x
DO - 10.1046/j.1524-475X.2003.11110.x
M3 - Article
C2 - 12581428
AN - SCOPUS:0037284938
SN - 1067-1927
VL - 11
SP - 64
EP - 70
JO - Wound Repair and Regeneration
JF - Wound Repair and Regeneration
IS - 1
ER -