Mesenchymal ETV transcription factors regulate cochlear lesngth

Michael Ebeid, Sung Ho Huh

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Mammalian cochlear development encompasses a series of morphological and molecular events that results in the formation of a highly intricate structure responsible for hearing. One remarkable event occurs during development is the cochlear lengthening that starts with cochlear outgrowth around E11 and continues throughout development. Different mechanisms contribute to this process including cochlear progenitor proliferation and convergent extension. We previously identified that FGF9 and FGF20 promote cochlear lengthening by regulating auditory sensory epithelial proliferation through FGFR1 and FGFR2 in the periotic mesenchyme. Here, we provide evidence that ETS-domain transcription factors ETV4 and ETV5 are downstream of mesenchymal FGF signaling to control cochlear lengthening. Next generation RNA sequencing identified that Etv1, Etv4 and Etv5 mRNAs are decreased in the Fgf9 and Fgf20 double mutant periotic mesenchyme. Deleting both Etv4 and Etv5 in periotic mesenchyme resulted in shortening of cochlear length but maintaining normal patterning of organ of Corti and density of hair cells and supporting cells. This recapitulates phenotype of mesenchymal-specific Fgfr1 and Fgfr2 deleted inner ear. Furthermore, analysis of Etv1/4/5 triple conditional mutants revealed that ETV1 does not contribute in this process. Our study reveals that ETV4 and ETV5 function downstream of mesenchymal FGF signaling to promote cochlear lengthening.

Original languageEnglish (US)
Article number108039
JournalHearing Research
StatePublished - Oct 2020


  • Cochlear development
  • ETV transcription Factors
  • FGF
  • Gene expression

ASJC Scopus subject areas

  • Sensory Systems


Dive into the research topics of 'Mesenchymal ETV transcription factors regulate cochlear lesngth'. Together they form a unique fingerprint.

Cite this