Microbubble cavitation imaging

Francois Vignon, William Shi, Jeffry E. Powers, E. Carr Everbach, Jinjin Liu, Shunji Gao, Feng Xie, Thomas Porter

Research output: Contribution to journalArticle

36 Scopus citations

Abstract

Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 ¿s. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented.

Original languageEnglish (US)
Article number6489801
Pages (from-to)661-670
Number of pages10
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume60
Issue number4
DOIs
StatePublished - Apr 10 2013

ASJC Scopus subject areas

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Microbubble cavitation imaging'. Together they form a unique fingerprint.

  • Cite this

    Vignon, F., Shi, W., Powers, J. E., Everbach, E. C., Liu, J., Gao, S., Xie, F., & Porter, T. (2013). Microbubble cavitation imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(4), 661-670. [6489801]. https://doi.org/10.1109/TUFFC.2013.2615