Microenvironmental immune cell signatures dictate clinical outcomes for PTCL-NOS

Takeshi Sugio, Kohta Miyawaki, Koji Kato, Kensuke Sasaki, Kyohei Yamada, Javeed Iqbal, Toshihiro Miyamoto, Koichi Ohshima, Takahiro Maeda, Hiroaki Miyoshi, Koichi Akashi

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Peripheral T-cell lymphoma (PTCL), not otherwise specified (PTCL-NOS) is among the most common disease subtypes of PTCL, one that exhibits heterogeneous clinicopathological features. Although multiple disease-stratification models, including the cell-of-origin or gene-expression profiling methods, have been proposed for this condition, their clinical significance remains unclear. To establish a clinically meaningful stratification model, we analyzed gene-expression signatures of tumors and tumor-infiltrating immune cells using the nCounter system, which enables accurate quantification of low abundance and/or highly fragmented transcripts. To do so, we assessed transcripts of 120 genes related to cancer or immune cells using tumor samples from 68 newly diagnosed PTCL-NOS patients and validated findings by immunofluorescence in tumor sections. We show that gene-expression signatures representing tumor-infiltrating immune cells, but not those of cancerous T cells, dictate patient clinical outcomes. Cases exhibiting both B-cell and dendritic cell (DC) signatures (BD subgroup) showed favorable clinical outcomes, whereas those exhibiting neither B-cell nor DC signatures (non-BD subgroup) showed extremely poor prognosis. Notably, half of the non-BD cases exhibited a macrophage signature, and macrophage infiltration was evident in those cases, as revealed by immunofluorescence. Importantly, tumor-infiltrating macrophages expressed the immune-checkpoint molecules programmed death ligand 1/2 and indoleamine 2, 3-dioxygenase 1 at high levels, suggesting that checkpoint inhibitors could serve as therapeutic options for patients in this subgroup. Our study identifies clinically distinct subgroups of PTCL-NOS and suggests a novel therapeutic strategy for 1 subgroup associated with a poor prognosis. Our data also suggest functional interactions between cancerous T cells and tumor-infiltrating immune cells potentially relevant to PTCL-NOS pathogenesis.

Original languageEnglish (US)
Pages (from-to)2242-2252
Number of pages11
JournalBlood Advances
Issue number17
StatePublished - Sep 11 2018

ASJC Scopus subject areas

  • Hematology


Dive into the research topics of 'Microenvironmental immune cell signatures dictate clinical outcomes for PTCL-NOS'. Together they form a unique fingerprint.

Cite this