TY - JOUR
T1 - MiR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene
AU - Zhou, Rui
AU - Li, Xiaoqing
AU - Hu, Guoku
AU - Gong, Ai Yu
AU - Drescher, Kristen M.
AU - Chen, Xian Ming
PY - 2012/1/24
Y1 - 2012/1/24
N2 - The signaling pathways associated with the Toll-like receptors (TLRs) and nuclear factor-kappaB (NF-κB) are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT). LPS stimulation activated miR-16 gene transcription in human monocytes (U937) and biliary epithelial cells (H69) through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3′-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene.
AB - The signaling pathways associated with the Toll-like receptors (TLRs) and nuclear factor-kappaB (NF-κB) are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT). LPS stimulation activated miR-16 gene transcription in human monocytes (U937) and biliary epithelial cells (H69) through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3′-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene.
UR - http://www.scopus.com/inward/record.url?scp=84856195948&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856195948&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0030772
DO - 10.1371/journal.pone.0030772
M3 - Article
C2 - 22292036
AN - SCOPUS:84856195948
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 1
M1 - e30772
ER -