Mismatch repair and DNA polymerase δproofreading prevent catastrophic accumulation of leading strand errors in cells expressing a cancer-associated DNA polymerase ϵ variant

Chelsea R. Bulock, Xuanxuan Xing, Polina V. Shcherbakova

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Substitutions in the exonuclease domain of DNA polymerase ϵ cause ultramutated human tumors. Yeast and mouse mimics of the most common variant, P286R, produce mutator effects far exceeding the effect of Polϵ exonuclease deficiency. Yeast Polϵ-P301R has increased DNA polymerase activity, which could underlie its high mutagenicity. We aimed to understand the impact of this increased activity on the strand-specific role of Polϵ in DNA replication and the action of extrinsic correction systems that remove Polϵ errors. Using mutagenesis reporters spanning a well-defined replicon, we show that both exonuclease-deficient Polϵ (Polϵ-exo-) and Polϵ-P301R generate mutations in a strictly strand-specific manner, yet Polϵ-P301R is at least ten times more mutagenic than Polϵ-exo- at each location analyzed. Thus, the cancer variant remains a dedicated leading-strand polymerase with markedly low accuracy. We further show that P301R substitution is lethal in strains lacking Polδproofreading or mismatch repair (MMR). Heterozygosity for pol2-P301R is compatible with either defect but causes strong synergistic increases in the mutation rate, indicating that Polϵ-P301R errors are corrected by Polδproofreading and MMR. These data reveal the unexpected ease with which polymerase exchange occurs in vivo, allowing Polδexonuclease to prevent catastrophic accumulation of Polϵ-P301R-generated errors on the leading strand.

Original languageEnglish (US)
Pages (from-to)9124-9134
Number of pages11
JournalNucleic acids research
Volume48
Issue number16
DOIs
StatePublished - Sep 18 2020

ASJC Scopus subject areas

  • Genetics

Fingerprint Dive into the research topics of 'Mismatch repair and DNA polymerase δproofreading prevent catastrophic accumulation of leading strand errors in cells expressing a cancer-associated DNA polymerase ϵ variant'. Together they form a unique fingerprint.

Cite this