MnTE-2-PyP protects fibroblast mitochondria from hyperglycemia and radiation exposure

Arpita Chatterjee, Isin T. Sakallioglu, Divya Murthy, Elizabeth A. Kosmacek, Pankaj K. Singh, J. Tyson McDonald, Robert Powers, Rebecca E. Oberley-Deegan

Research output: Contribution to journalArticlepeer-review

Abstract

Radiation is a common anticancer therapy for prostate cancer, which transforms tumor-associated normal fibroblasts to myofibroblasts, resulting in fibrosis. Oxidative stress caused by radiation-mediated mitochondrial damage is one of the major contributors to fibrosis. As diabetics are oxidatively stressed, radiation-mediated reactive oxygen species cause severe treatment failure, treatment-related side effects, and significantly reduced survival for diabetic prostate cancer patients as compared to non-diabetic prostate cancer patients. Hyperglycemia and enhanced mitochondrial damage significantly contribute to oxidative damage and disease progression after radiation therapy among diabetic prostate cancer patients. Therefore, reduction of mitochondrial damage in normal prostate fibroblasts after radiation should improve the overall clinical state of diabetic prostate cancer patients. We previously reported that MnTE-2-PyP, a manganese porphyrin, reduces oxidative damage in irradiated hyperglycemic prostate fibroblasts by scavenging superoxide and activating NRF2. In the current study, we have investigated the potential role of MnTE-2-PyP to protect mitochondrial health in irradiated hyperglycemic prostate fibroblasts. This study revealed that hyperglycemia and radiation increased mitochondrial ROS via blocking the mitochondrial electron transport chain, altered mitochondrial dynamics, and reduced mitochondrial biogenesis. Increased mitochondrial damage preceeded an increase in myofibroblast differentiation. MnTE-2-PyP reduced myofibroblast differentiation, improved mitochondrial health by releasing the block on the mitochondrial electron transport chain, enhanced ATP production efficiency, and restored mitochondrial dynamics and metabolism in the irradiated-hyperglycemic prostate fibroblasts. Therefore, we are proposing that one of the mechanisms that MnTE-2-PyP protects prostate fibroblasts from irradiation and hyperglycemia-mediated damage is by protecting the mitochondrial health in diabetic prostate cancer patients.

Original languageEnglish (US)
Article number102301
JournalRedox Biology
Volume52
DOIs
StatePublished - Jun 2022

Keywords

  • Diabetes
  • Fibroblast metabolism
  • Manganese porphyrin
  • Mitochondria
  • ROS
  • Radiation

ASJC Scopus subject areas

  • Organic Chemistry
  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'MnTE-2-PyP protects fibroblast mitochondria from hyperglycemia and radiation exposure'. Together they form a unique fingerprint.

Cite this