Mode of action in relevance of rodent liver tumors to human cancer risk

Michael P. Holsapple, Henri C. Pitot, Samuel H. Cohen, Alan R. Boobis, James E. Klaunig, Timothy Pastoor, Vicki L. Dellarco, Yvonne P. Dragan

Research output: Contribution to journalArticlepeer-review

200 Scopus citations


Hazard identification and risk assessment paradigms depend on the presumption of the similarity of rodents to humans, yet species specific responses, and the extrapolation of high-dose effects to low-dose exposures can affect the estimation of human risk from rodent data. As a consequence, a human relevance framework concept was developed by the International Programme on Chemical Safety (IPCS) and International Life Sciences Institute (ILSI) Risk Science Institute (RSI) with the central tenet being the identification of a mode of action (MOA). To perform a MOA analysis, the key biochemical, cellular, and molecular events need to first be established, and the temporal and dose-dependent concordance of each of the key events in the MOA can then be determined. The key events can be used to bridge species and dose for a given MOA. The next step in the MOA analysis is the assessment of biological plausibility for determining the relevance of the specified MOA in an animal model for human cancer risk based on kinetic and dynamic parameters. Using the framework approach, a MOA in animals could not be defined for metal overload. The MOA for phenobarbital (PB)-like P450 inducers was determined to be unlikely in humans after kinetic and dynamic factors were considered. In contrast, after these factors were considered with reference to estrogen, the conclusion was drawn that estrogen-induced tumors were plausible in humans. Finally, it was concluded that the induction of rodent liver tumors by porphyrogenic compounds followed a cytotoxic MOA, and that liver tumors formed as a result of sustained cytotoxicity and regenerative proliferation are considered relevant for evaluating human cancer risk if appropriate metabolism occurs in the animal models and in humans.

Original languageEnglish (US)
Pages (from-to)51-56
Number of pages6
JournalToxicological Sciences
Issue number1
StatePublished - Jan 2006

ASJC Scopus subject areas

  • Toxicology

Fingerprint Dive into the research topics of 'Mode of action in relevance of rodent liver tumors to human cancer risk'. Together they form a unique fingerprint.

Cite this