Abstract
Previous analyses of Saccharomyces cerevisiae chromosome I have suggested that the majority (>75%) of single-copy essential genes on this chromosome are difficult or impossible to identify using temperature-sensitive (Ts-) lethal mutations. To investigate whether this situation reflects intrinsic difficulties in generating temperature-sensitive proteins or constraints on mutagenesis in yeast, we subjected three cloned essential genes from chromosome I to mutagenesis in an Escherichia coli mutator strain and screened for Ts- lethal mutations in yeast using the "plasmid-shuffle" technique. We failed to obtain Ts- lethal mutations in two of the genes (FUN12 and FUN20), while the third gene yielded such mutations, but only at a low frequency. DNA sequence analysis of these mutant alleles and of the corresponding wild-type region revealed that each mutation was a single substitution not in the previously identified gene FUN19, but in the adjacent, newly identified essential gene FUN53. FUN19 itself proved to be non-essential. These results suggest that many essential proteins encoded by genes on chromosome I cannot be rendered thermolabile by single mutations. However, the results obtained with FUN53 suggest that there may also be significant constraints on mutagenesis in yeast. The 5046 base-pair interval sequenced contains the complete FUN19, FUN53 and FUN20 coding regions, as well as a portion of the adjacent non-essential FUN21 coding region. In all, 68 to 75% of this interval is open reading frame. None of the four predicted products shows significant homologies to known proteins in the available databases.
Original language | English (US) |
---|---|
Pages (from-to) | 53-65 |
Number of pages | 13 |
Journal | Journal of Molecular Biology |
Volume | 225 |
Issue number | 1 |
DOIs | |
State | Published - May 5 1992 |
Externally published | Yes |
Keywords
- Saccharomyces cerevisiae
- chromosome
- gene-number paradox
- mutagenesis
- temperature-sensitive mutants
ASJC Scopus subject areas
- Structural Biology
- Molecular Biology