Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates

Lili Zhang, Zesheng Zhang, John Jasa, Dongli Li, Robin O. Cleveland, Mehrdad Negahban, Antoine Jérusalem

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as "mechanical catalysts" to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.

Original languageEnglish (US)
Article number8316
JournalScientific reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates'. Together they form a unique fingerprint.

  • Cite this