Molecular simulations of solid-liquid interfacial tension of silicon

Yuk Wai Tang, Jun Wang, X. C. Zeng

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The use of silicons as a semiconductor for manufacturing microchips used in computers and electronic devices was described. Liquid silicon is solidified to make high-grade solid semiconductor during the manufacturing process. The data of solid-liquid interfacial properties of silicon is useful for optimizing the experimental condition for making better quality electronics. Deep undercooling was achieved in bulk liquid silicon using containerless processing techniques such as electrostatic levitation and flux processing. The silicon solid-liquid interfacial properties and liquid-vapor surface tension of silicon were computed by evaluating free-energy using Monte Carlo simulations. Also silicon crystals undergoes superheating during heating process and structure melts at a temperature higher than the melting points. The results show that since the simulation was carried out at zero pressure, the enthalpy change at melting point was equal to the change of internal energy of the system.

Original languageEnglish (US)
Article number236103
JournalJournal of Chemical Physics
Volume124
Issue number23
DOIs
StatePublished - Jun 21 2006
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Molecular simulations of solid-liquid interfacial tension of silicon'. Together they form a unique fingerprint.

Cite this