TY - JOUR
T1 - Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments
AU - Pedersen, Matthew
AU - Wegner, Casey
AU - Phansak, Piyaporn
AU - Sarath, Gautam
AU - Gaussoin, Roch
AU - Schlegel, Vicki
N1 - Funding Information:
This research was funded by Syngenta Agrochemical Company . We are very grateful to Dr. Tom Elthon from the University of Nebraska-Lincoln for his assistance with the oxygen uptake assays. We would also like to thank Cindy Nguyen for her technical assistance. The U.S. Department of Agriculture, Agricultural Research Service, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of commercial products and organizations in this manuscript is solely to provide specific information.
Publisher Copyright:
© 2016
PY - 2017/2/15
Y1 - 2017/2/15
N2 - Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able to modify other mitochondrial constituents. Fourier transform mid-infrared spectroscopy (FT-mIR) offers a high sample throughput method to comparatively and qualitatively evaluate the effects of exogenously added compounds on mitochondrial components. Therefore the objective of this study was to determine the ability of FT-mIR to detect effects mitochondrial fractions isolated from wheat (Triticum aestivum L.) seedlings in response to several agrochemical treatments, with an emphasis on fungicides. The accessed need was to develop FT-mIR analytical and statistical routines as an effective approach to differentiate spectra obtained from chemically-treated or untreated mitochondria. An NADH-dependent oxygen uptake approach was initially used as a comparative method to determine whether the fungicides (azoxystrobin, boscalid, cyazofamid, fluazinam, isopyrazam, and pyraclostrobin) and the plant growth regulator, (trinexapac-ethyl) reduced respiration inhibition on isolated mitochondria. Pyraclostrobin was the most effective inhibitor, whereas amisulbrom did not impact oxygen uptake. However, hierarchical clustering of FT-mIR spectra of isolated mitochondria treated with these different compounds separated into clades consistent with each of their expected mode of action. Analysis of the FT-mIR amide protein region indicated that amisulbrom and pyraclostrobin interacted with the isolated wheat mitochondria. Both chemicals were statistically different from the control signifying that respiration was indeed influenced by these treatments. Moreover, the entire FT-mIR region showed differences in various biological bands thereby providing additional information on mitochondria responses to agrochemicals, if so warranted.
AB - Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able to modify other mitochondrial constituents. Fourier transform mid-infrared spectroscopy (FT-mIR) offers a high sample throughput method to comparatively and qualitatively evaluate the effects of exogenously added compounds on mitochondrial components. Therefore the objective of this study was to determine the ability of FT-mIR to detect effects mitochondrial fractions isolated from wheat (Triticum aestivum L.) seedlings in response to several agrochemical treatments, with an emphasis on fungicides. The accessed need was to develop FT-mIR analytical and statistical routines as an effective approach to differentiate spectra obtained from chemically-treated or untreated mitochondria. An NADH-dependent oxygen uptake approach was initially used as a comparative method to determine whether the fungicides (azoxystrobin, boscalid, cyazofamid, fluazinam, isopyrazam, and pyraclostrobin) and the plant growth regulator, (trinexapac-ethyl) reduced respiration inhibition on isolated mitochondria. Pyraclostrobin was the most effective inhibitor, whereas amisulbrom did not impact oxygen uptake. However, hierarchical clustering of FT-mIR spectra of isolated mitochondria treated with these different compounds separated into clades consistent with each of their expected mode of action. Analysis of the FT-mIR amide protein region indicated that amisulbrom and pyraclostrobin interacted with the isolated wheat mitochondria. Both chemicals were statistically different from the control signifying that respiration was indeed influenced by these treatments. Moreover, the entire FT-mIR region showed differences in various biological bands thereby providing additional information on mitochondria responses to agrochemicals, if so warranted.
KW - Fourier transform mid infrared
KW - Fungicides
KW - High-throughput
KW - Mitochondria respiration
UR - http://www.scopus.com/inward/record.url?scp=84992598375&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84992598375&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2016.10.025
DO - 10.1016/j.saa.2016.10.025
M3 - Article
C2 - 27788471
AN - SCOPUS:84992598375
SN - 1386-1425
VL - 173
SP - 727
EP - 732
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
ER -