Abstract
Interferon regulatory factors are a growing family of transcription factor that have been implicated in cellular events such as cell-growth regulation, antiviral defense, and development of the immune system. Interferon regulatory factor 7 (IRF-7) is expressed predominantly in lymphoid tissues and has been studied extensively in the context of viral infection and the induction of interferon and cytokine gene expression. In this paper, the involvement of IRF-7 in monocyte differentiation was examined in U937, HL60, and human primary macrophages. We report the induction of IRF-7 expression by 12-O-tetradecanoylphorbol- 13-acetate in U937 and HL60 cells and demonstrate that this induction is essential for the monocyte differentiation to macrophages. We show that the monocyte differentiation is inhibited in cells expressing a dominant negative IRF-7 mutant, as evidenced by decreased expression of two macrophage-differentiation markers, CD11b and CD11c, and impaired phagocytic activity. In addition, we demonstrate that overexpression of IRF-7 is sufficient to trigger monocyte differentiation and to induce cell cycle arrest. The identification of IRF-7 as a key regulator in monocyte differentiation suggests a novel function of IRF-7 in innate immunity.
Original language | English (US) |
---|---|
Pages (from-to) | 45491-45496 |
Number of pages | 6 |
Journal | Journal of Biological Chemistry |
Volume | 276 |
Issue number | 48 |
DOIs | |
State | Published - Nov 30 2001 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology