Abstract
Objective: It is widely believed that the perinatal brain injuries seen in youth with cerebral palsy (CP) impact neuronal processing of sensory information and the production of leg motor actions during gait. However, very limited efforts have been made to evaluate the connection between neural activity within sensorimotor networks and the altered spatiotemportal gait biomechanics seen in youth with CP. The objective of this investigation was to use magnetoencephalographic (MEG) brain imaging and biomechanical analysis to probe this connection. Methods: We examined the cortical beta oscillations serving motor control of the legs in a cohort of youth with CP (N = 20; Age = 15.5 ± 3 years; GMFCS levels I-III) and healthy controls (N = 15; Age = 14.1 ± 3 years) using MEG brain imaging and a goal-directed isometric knee target-matching task. Outside the scanner, a digital mat was used to quantify the spatiotemporal gait biomechanics. Results: Our MEG imaging results revealed that the participants with CP exhibited stronger sensorimotor beta oscillations during the motor planning and execution stages compared to the controls. Interestingly, we also found that those with the strongest sensorimotor beta oscillations during motor execution also tended to walk slower and have a reduced cadence. Interpretation: These results fuel the impression that the beta sensorimotor cortical oscillations that underlie leg musculature control may play a central role in the altered mobility seen in youth with CP.
Original language | English (US) |
---|---|
Pages (from-to) | 2421-2432 |
Number of pages | 12 |
Journal | Annals of Clinical and Translational Neurology |
Volume | 7 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2020 |
ASJC Scopus subject areas
- General Neuroscience
- Clinical Neurology