MR assessment of osteogenic differentiation in tissue-engineered constructs

Ioana A. Peptan, Liu Hong, Huihui Xu, Richard L. Magin

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


Bone marrow stromal cells (MSC) are a promising source of osteoprogenitor cells for bone tissue engineering. However, the population of the osteoprogenitor cells and their differentiation potentials change with the gender, age, and health of the donor. Development of a noninvasive method to assess osteogenic progression is critical for successful bone tissue regeneration. High-resolution magnetic resonance imaging (MRI) (at 11.7 T, with spatial resolution of 62.5 × 62.5 μm in 500 7mu;m slices) is used in the present study to monitor osteogenic differentiation of tissue-engineered constructs prepared by seeding human bone MSCs on gelatin sponge scaffolds. Quantitative measurements of the MR relaxation times (T1, T2) and the apparent diffusion coefficient (ADC) were performed for four successive weeks on control tissue constructs and constructs exposed to osteogenic differentiation medium. The T1 and T2 relaxation times and ADC were found to decrease as osteogenic progression proceeded in samples exposed to osteogenic differentiation medium. At week 4, the T1, T2, and ADC of TE constructs were 1.81 ± 0.11 s, 19.5 ± 11.02 ms, and 1.01 ± 0.47 × 10-3 mm 2/s, respectively, for osteogenic differentiated constructs, significantly different from control constructs 2.22 ± 0.08 s, 50.39 ± 5.57 ms, and 1.86 ± 0.18 × 10-3 mm 2/s (p < 0.05). The MR parameters were also highly correlated with the cell seeding densities and alkaline phosphatase (ALP) activities of the osteogenic constructs. In conclusion, periodic measurements of MR parameters (T1, T2, and ADC) provide a promising method for noninvasive monitoring of the status of tissue-engineered bone growth and differentiation.

Original languageEnglish (US)
Pages (from-to)843-851
Number of pages9
JournalTissue Engineering
Issue number4
StatePublished - Apr 2006

ASJC Scopus subject areas

  • Biotechnology
  • Biophysics
  • Cell Biology


Dive into the research topics of 'MR assessment of osteogenic differentiation in tissue-engineered constructs'. Together they form a unique fingerprint.

Cite this