Myelostimulatory activity of recombinant human interleukin-2 in mice

J. E. Talmadge, M. Schneider, J. Keller, F. Ruscetti, D. Longo, R. Pennington, O. Bowersox, H. Tribble

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

In a series of studies designed to extend our understanding of interleukin-2 (IL-2) and to study the effect of biologic response modifiers on bone marrow, we observed that administering recombinant human (rH) IL-2 to normal mice resulted in an increase in the frequency of colony-forming units-culture (CFU-C) in bone marrow. In addition, rH IL-2 was able to accelerate host recovery from cyclophosphamide (CTX)- or radiation-induced bone marrow depression and peripheral blood leukopenia. Not only can rH IL-2 accelerate, in a dose-dependent manner, the return of bone marrow, peripheral blood cellularity, and CFU-C frequency to normal levels following cytoreduction by CTX or irradiation, but it also significantly increases CFU-C frequency to greater than normal levels. Furthermore, rH IL-2 can significantly prolong survival of animals receiving a lethal dose of irradiation or CTX. Thus, multiple mechanisms are responsible for the synergistic therapeutic activity associated with rH IL-2 and CTX. rH IL-2 does not act only as an immunomodulatory agent in the presence or absence of suppressor T cells, but also accelerates host recovery from cytoreductive agents, resulting in decreased leukopenia and perhaps resistance to secondary infection. Thus, rH IL-2 plus chemotherapy may increase therapeutic activity against neoplastic disease, not only by adding immune stimulation to the direct antitumor effect of the drug but also by allowing delivery of higher, more effective doses of chemotherapy.

Original languageEnglish (US)
Pages (from-to)1458-1467
Number of pages10
JournalBlood
Volume73
Issue number6
DOIs
StatePublished - 1989
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Myelostimulatory activity of recombinant human interleukin-2 in mice'. Together they form a unique fingerprint.

Cite this