Nanoengineered myogenic scaffolds for skeletal muscle tissue engineering

Jacob P. Quint, Mohamadmahdi Samandari, Laleh Abbasi, Evelyn Mollocana, Chiara Rinoldi, Azadeh Mostafavi, Ali Tamayol

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Extreme loss of skeletal muscle overwhelms the natural regenerative capability of the body, results in permanent disability and substantial economic burden. Current surgical techniques result in poor healing, secondary injury to the autograft donor site, and incomplete recuperation of muscle function. Most current tissue engineering and regenerative strategies fail to create an adequate mechanical and biological environment that enables cell infiltration, proliferation, and myogenic differentiation. In this study, we present a nanoengineered skeletal muscle scaffold based on functionalized gelatin methacrylate (GelMA) hydrogel, optimized for muscle progenitors' proliferation and differentiation. The scaffold was capable of controlling the release of insulin-like growth factor 1 (IGF-1), an important myogenic growth factor, by utilizing the electrostatic interactions with LAPONITE® nanoclays (NCs). Physiologically relevant levels of IGF-1 were maintained during a controlled release over two weeks. The NC was able to retain 50% of the released IGF-1 within the hydrogel niche, significantly improving cellular proliferation and differentiation compared to control hydrogels. IGF-1 supplemented medium controls required 44% more IGF-1 than the comparable NC hydrogel composites. The nanofunctionalized scaffold is a viable option for the treatment of extreme muscle injuries and offers scalable benefits for translational interventions and the growing field of clean meat production.

Original languageEnglish (US)
Pages (from-to)797-814
Number of pages18
JournalNanoscale
Volume14
Issue number3
DOIs
StatePublished - Jan 21 2022

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Nanoengineered myogenic scaffolds for skeletal muscle tissue engineering'. Together they form a unique fingerprint.

Cite this