Abstract
Fluid intelligence, the ability to problem-solve in novel situations, is linked to higher-order cognitive abilities, and to academic achievement in youth. Previous research has demonstrated that fluid intelligence and the underlying neural circuitry continues to develop throughout adolescence. Neuroimaging studies have predominantly focused on identifying the spatial distribution of brain regions associated with fluid intelligence, with only a few studies examining the temporally-sensitive cortical oscillatory dynamics underlying reasoning abilities. The present study collected magnetoencephalography (MEG) during an abstract reasoning task to examine these spatiotemporal dynamics in a sample of 10-to-16 year-old youth. We found increased cortical activity across a distributed frontoparietal network. Specifically, our key results showed: (1) age was associated with increased theta activity in occipital and cerebellar regions, (2) robust sex differences were distributed across frontoparietal regions, and (3) that specific frontoparietal regions differentially predicted abstract reasoning performance among males versus females despite similar mean performance. Among males, increased theta activity mediated the relationship between age and faster reaction times; conversely, among females, decreased theta mediated the relationship between age and improved accuracy. These findings may suggest that males and females engage in distinct neurocognitive strategies across development to achieve similar behavioral outcomes during fluid reasoning tasks.
Original language | English (US) |
---|---|
Article number | 100770 |
Journal | Developmental Cognitive Neuroscience |
Volume | 42 |
DOIs | |
State | Published - Apr 2020 |
Keywords
- Dev-CoG
- Fluid intelligence
- MEG
- Oscillations
- Sex effects
- Theta
ASJC Scopus subject areas
- Cognitive Neuroscience