TY - JOUR
T1 - Nicotine impairs histamine-induced increases in macromolecular efflux
T2 - Role of oxygen radicals
AU - Mayhan, William G.
AU - Sharpe, Glenda M.
PY - 1998/5
Y1 - 1998/5
N2 - Nicotine, a major component of cigarettes and smokeless tobacco, has toxic effects on endothelium and impairs reactivity of resistance arterioles in response to agonists that stimulate the synthesis and/or release of nitric oxide. However, the effect of nicotine on nitric oxide synthase-dependent increases in macromolecular transport is not known. Thus our first goal was to determine the effect of nicotine on histamine-induced increases in macromolecular efflux. We used intravital microscopy and FITC dextran (mol wt 70,000) (FITC-dextran-70K) to examine macromolecular extravasation from postcapillary venules in response to histamine before and after intravenous infusion of vehicle or nicotine. Extravasation of macromolecules was quantitated by counting venular leaky sites and calculating clearance (ml/s x 10-6) of FITC-dextran-70K. Histamine elicited reproducible increases in venular leaky sites and clearance in hamsters infused with vehicle. In contrast, nicotine infusion inhibited histamine-induced increases in macromolecular efflux. Histamine (1.0 and 5.0 μM) elicited 19 ± 2 and 34 ± 4 vs. 3 ± 1 and 11 ± 5 leaky sites per 0.11 cm2, before vs. after nicotine infusion, respectively (P < 0.05). Histamine-induced clearance of FITC- dextran-70K was also impaired after infusion of nicotine. Our second goal was to examine whether alterations in histamine-induced increases in macromolecular efflux by nicotine may be related to the production of oxygen radicals. Application of superoxide dismutase (150 U/ml) to the hamster cheek pouch restored histamine-induced increases in venular leaky sites and clearance of FITC-dextran-70K during infusion of nicotine. Thus nicotine alters agonist-induced increases in microvascular permeability, via the formation of oxygen radicals, to presumably inactivate nitric oxide.
AB - Nicotine, a major component of cigarettes and smokeless tobacco, has toxic effects on endothelium and impairs reactivity of resistance arterioles in response to agonists that stimulate the synthesis and/or release of nitric oxide. However, the effect of nicotine on nitric oxide synthase-dependent increases in macromolecular transport is not known. Thus our first goal was to determine the effect of nicotine on histamine-induced increases in macromolecular efflux. We used intravital microscopy and FITC dextran (mol wt 70,000) (FITC-dextran-70K) to examine macromolecular extravasation from postcapillary venules in response to histamine before and after intravenous infusion of vehicle or nicotine. Extravasation of macromolecules was quantitated by counting venular leaky sites and calculating clearance (ml/s x 10-6) of FITC-dextran-70K. Histamine elicited reproducible increases in venular leaky sites and clearance in hamsters infused with vehicle. In contrast, nicotine infusion inhibited histamine-induced increases in macromolecular efflux. Histamine (1.0 and 5.0 μM) elicited 19 ± 2 and 34 ± 4 vs. 3 ± 1 and 11 ± 5 leaky sites per 0.11 cm2, before vs. after nicotine infusion, respectively (P < 0.05). Histamine-induced clearance of FITC- dextran-70K was also impaired after infusion of nicotine. Our second goal was to examine whether alterations in histamine-induced increases in macromolecular efflux by nicotine may be related to the production of oxygen radicals. Application of superoxide dismutase (150 U/ml) to the hamster cheek pouch restored histamine-induced increases in venular leaky sites and clearance of FITC-dextran-70K during infusion of nicotine. Thus nicotine alters agonist-induced increases in microvascular permeability, via the formation of oxygen radicals, to presumably inactivate nitric oxide.
KW - Fluorescein isothiocyanate-dextran
KW - Hamsters
KW - Nitric oxide
KW - Superoxide dismutase
KW - Vascular permeability
KW - Venules
UR - http://www.scopus.com/inward/record.url?scp=0031958118&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031958118&partnerID=8YFLogxK
U2 - 10.1152/jappl.1998.84.5.1589
DO - 10.1152/jappl.1998.84.5.1589
M3 - Article
C2 - 9572803
AN - SCOPUS:0031958118
SN - 8750-7587
VL - 84
SP - 1589
EP - 1595
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 5
ER -