Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes

Research output: Contribution to journalArticlepeer-review

91 Scopus citations


Bone growth is driven by cell proliferation and the subsequent hypertrophy of chondrocytes arranged in columns of discoid cells that resemble stacks of coins. However, the molecular mechanisms that direct column formation and the importance of columnar organization to bone morphogenesis are not known. Here, we show in chick that discoid proliferative chondrocytes orient the division plane to generate daughter cells that are initially displaced laterally and then intercalate into the column. Downregulation of frizzled (Fzd) signaling alters the dimensions of long bones and produces cell-autonomous changes in proliferative chondrocyte organization characterized by arbitrary division planes and altered cell stacking. These defects are phenocopied by disruption of noncanonical effector pathways but not by inhibitors of canonical Fzd signaling. These findings demonstrate that the regulation of cell polarity and cell arrangement by noncanonical Fzd signaling plays important roles in generating the unique morphological characteristics that shape individual cartilage elements.

Original languageEnglish (US)
Pages (from-to)1083-1092
Number of pages10
Issue number7
StatePublished - Apr 1 2009
Externally publishedYes


  • Chondrocyte
  • Fzd signaling
  • Morphogenesis
  • Planar cell polarity
  • Polarity
  • Skeleton

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology


Dive into the research topics of 'Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes'. Together they form a unique fingerprint.

Cite this