Nonlinear Vibrations in Contact Atomic Force Microscopy

Joseph A. Turner

Research output: Contribution to conferencePaperpeer-review

6 Scopus citations

Abstract

The nonlinear vibration response of an atomic force micro-scope cantilever in contact with a vibrating sample is investigated. The tip-sample contact is modeled using Hertzian contact mechanics. The method of multiple scales is used to analyze this problem in which it is assumed that the beam remains in contact with the moving surface at all times. The primary result from this analysis is the amplitude-frequency relation for the various flexural modes. The amplitude-frequency curves exhibit softening behavior as expected. The amount of softening is shown to depend on the linear contact stiffness as well as the specific mode. The modal sensitivity to nonlinearity is the result of the nonlinearity being restricted to a single position. The mode shape greatly affects the degree to which the nonlinearity influences the frequency response. The Hertzian restriction is then loosened slightly such that variations in nonlinear contact stiffness are examined. These results depend on the linear contact stiffness and mode number as well. The nonlinear vibration response is expected to provide new insight on the nonlinear tip mechanics present in these systems.

Original languageEnglish (US)
Pages1821-1830
Number of pages10
DOIs
StatePublished - 2003
Event2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Chicago, IL, United States
Duration: Sep 2 2003Sep 6 2003

Conference

Conference2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CityChicago, IL
Period9/2/039/6/03

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Nonlinear Vibrations in Contact Atomic Force Microscopy'. Together they form a unique fingerprint.

Cite this