Norton algebras of the hamming graphs via linear characters

Jia Huang

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


The Norton product is defined on each eigenspace of a distance regular graph by the orthogonal projection of the entry-wise product. The resulting algebra, known as the Norton algebra, is a commutative nonassociative algebra that is useful in group theory due to its interesting automorphism group. We provide a formula for the Norton product on each eigenspace of a Hamming graph using linear characters. We construct a large subgroup of automorphisms of the Norton algebra of a Hamming graph and completely describe the automorphism group in some cases. We also show that the Norton product on each eigenspace of a Hamming graph is as nonassociative as possible, except for some special cases in which it is either associative or equally as nonassociative as the so-called double minus operation previously studied by the author, Mickey, and Xu. Our results restrict to the hypercubes and extend to the halved and/or folded cubes, the bilinear forms graphs, and more generally, all Cayley graphs of finite abelian groups.

Original languageEnglish (US)
Article number#P2.30
JournalElectronic Journal of Combinatorics
Issue number2
StatePublished - 2021

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics
  • Applied Mathematics


Dive into the research topics of 'Norton algebras of the hamming graphs via linear characters'. Together they form a unique fingerprint.

Cite this