Novel fabrication of micromechanical oscillators with nanoscale sensitivity at room temperature

Michelle D. Chabot, John M. Moreland, Lan Gao, Sy Hwang Liou, Casey W. Miller

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


In this paper, we report on the design, fabrication, and implementation of ultrasensitive micromechanical oscillators. Our ultrathin single-crystal silicon cantilevers with integrated magnetic structures are the first of their kind: They are fabricated using a novel high-yield process in which magnetic film patterning and deposition are combined with cantilever fabrication. These novel devices have been developed for use as cantilever magnetometers and as force sensors in nuclear magnetic resonance force microscopy (MRFM). These two applications have achieved nanometer-scale resolution using the cantilevers described in this work. Current magnetic moment sensitivity achieved for the devices, when used as magnetometers, is 10-15 J/T at room temperature, which is more than a 1000-fold improvement in sensitivity, compared to conventional magnetometers. Current room temperature force sensitivity of MRFM cantilevers is ∼ 10-16 N/√ Hz, which is comparable to the room temperature sensitivities of similar devices of its type. Finite element modeling was used to improve design parameters, ensure that the devices meet experimental demands, and correlate mode shape with observed results. The photolithographic fabrication process was optimized, yielding an average of ∼ 85% and alignment better than 1 μm. Postfabrication-focused ion-beam milling was used to further pattern the integrated magnetic structures when nanometer scale dimensions were required.

Original languageEnglish (US)
Pages (from-to)1118-1126
Number of pages9
JournalJournal of Microelectromechanical Systems
Issue number5
StatePublished - Oct 2005


  • Cantilevers
  • Fabrication
  • Magnetic resonance force microscopy (MRFM)
  • Magnetometry

ASJC Scopus subject areas

  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Novel fabrication of micromechanical oscillators with nanoscale sensitivity at room temperature'. Together they form a unique fingerprint.

Cite this