Observational evidence of temperature trends at two levels in the surface layer

X. Lin, R. A. Pielke, R. Mahmood, C. A. Fiebrich, R. Aiken

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Long-term surface air temperatures at 1.5 m screen level over land are used in calculating a global average surface temperature trend. This global trend is used by the IPCC and others to monitor, assess, and describe global warming or warming hiatus. Current knowledge of near-surface temperature trends with respect to height, however, is limited and inadequately understood because surface temperature observations at different heights in the surface layer of the world are rare especially from a high-quality and long-term climate monitoring network. Here we use high-quality two-height Oklahoma Mesonet observations, synchronized in time, fixed in height, and situated in relatively flat terrain, to assess temperature trends and differentiating temperature trends with respect to heights (i.e., near-surface lapse rate trend) over the period 1997 to 2013. We show that the near-surface lapse rate has significantly decreased with a trend of − 0.18 ± 0.03 C (10 m)−1 per decade indicating that the 9 m height temperatures increased faster than temperatures at the 1.5 m screen level and/or conditions at the 1.5 m height cooled faster than at the 9 m height. However, neither of the two individual height temperature trends by themselves were statistically significant. The magnitude of lapse rate trend is greatest under lighter winds at night. Nighttime lapse rate trends were significantly more negative than daytime lapse rate trends and the average lapse rate trend was three times more negative under calm conditions than under windy conditions. Our results provide the first observational evidence of near-surface temperature changes with respect to height that could enhance the assessment of climate model predictions.

Original languageEnglish (US)
Pages (from-to)827-841
Number of pages15
JournalAtmospheric Chemistry and Physics
Volume16
Issue number2
DOIs
StatePublished - 2016
Externally publishedYes

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Observational evidence of temperature trends at two levels in the surface layer'. Together they form a unique fingerprint.

Cite this