TY - JOUR
T1 - Occasional tillage of no-till systems
T2 - Carbon dioxide flux and changes in total and labile soil organic carbon
AU - Quincke, J. A.
AU - Wortmann, C. S.
AU - Mamo, M.
AU - Franti, T.
AU - Drijber, R. A.
PY - 2007/7
Y1 - 2007/7
N2 - Soil organic carbon (SOC) accumulation occurs mostly in the top 5 cm of soil with continuous no-till (NT) while SOC losses often occur at deeper depths. We hypothesize that one-time tillage conducted once in >10 yr to mix the high SOC surface layer with deeper soil will not result in large SOC losses following tillage with a net positive gain in SOC eventually. Two experiments in long-term NT fields were installed under rainfed com (Zea mays L.) or sorghum [Sorghum bicolor (L.) Moench.] rotated with soybean [Glycine max (L.) Merr.] in eastern Nebraska. Tillage treatments were applied in the spring or fall and included: NT, disk, chisel with 10-cm wide twisted shanks, moldboard plow (MP), and mini-moldboard plow (miniMP). A portable infrared gas analyzer was used to monitor CO2 flux immediately following tillage. Effect of tillage on profile distribution of total and labile (particulate and oxidizable) SOC was determined. At 24 to 32 mo following tillage, SOC mass was determined for depths of 0 to 5, 5 to 20, and 20 to 30 cm. Some tillage operations effectively redistributed total and labile SOC with little increase in CO2 flux compared with NT. Total and labile SOC concentrations were reduced by 24 to 88% in the 0- to 2.5-cm depth and increased by 13 to 381% for the 5- to 10-cm depth for the various tillage operations. Moldboard plowing caused the greatest redistribution of SOC. On an equivalent soil mass basis, tillage did not cause significant losses of total or labile SOC between tillage and planting of the next crop or by 24 to 32 mo after tillage. Stratification of SOC in long-term NT soil could be reduced most effectively by means of one-time MP tillage without increased loss of labile SOC.
AB - Soil organic carbon (SOC) accumulation occurs mostly in the top 5 cm of soil with continuous no-till (NT) while SOC losses often occur at deeper depths. We hypothesize that one-time tillage conducted once in >10 yr to mix the high SOC surface layer with deeper soil will not result in large SOC losses following tillage with a net positive gain in SOC eventually. Two experiments in long-term NT fields were installed under rainfed com (Zea mays L.) or sorghum [Sorghum bicolor (L.) Moench.] rotated with soybean [Glycine max (L.) Merr.] in eastern Nebraska. Tillage treatments were applied in the spring or fall and included: NT, disk, chisel with 10-cm wide twisted shanks, moldboard plow (MP), and mini-moldboard plow (miniMP). A portable infrared gas analyzer was used to monitor CO2 flux immediately following tillage. Effect of tillage on profile distribution of total and labile (particulate and oxidizable) SOC was determined. At 24 to 32 mo following tillage, SOC mass was determined for depths of 0 to 5, 5 to 20, and 20 to 30 cm. Some tillage operations effectively redistributed total and labile SOC with little increase in CO2 flux compared with NT. Total and labile SOC concentrations were reduced by 24 to 88% in the 0- to 2.5-cm depth and increased by 13 to 381% for the 5- to 10-cm depth for the various tillage operations. Moldboard plowing caused the greatest redistribution of SOC. On an equivalent soil mass basis, tillage did not cause significant losses of total or labile SOC between tillage and planting of the next crop or by 24 to 32 mo after tillage. Stratification of SOC in long-term NT soil could be reduced most effectively by means of one-time MP tillage without increased loss of labile SOC.
UR - http://www.scopus.com/inward/record.url?scp=34447566134&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447566134&partnerID=8YFLogxK
U2 - 10.2134/agronj2006.0317
DO - 10.2134/agronj2006.0317
M3 - Article
AN - SCOPUS:34447566134
VL - 99
SP - 1158
EP - 1168
JO - Journal of Production Agriculture
JF - Journal of Production Agriculture
SN - 0002-1962
IS - 4
ER -