On codes designed via algebraic lifts of graphs

Christine A. Kelley

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Over the past few years several constructions of protograph codes have been proposed that are based on random lifts of suitably chosen base graphs. More recently, an algebraic analog of this approach was introduced using the theory of voltage graphs. The strength of the voltage graph framework is the ability to analyze the resulting derived graph algebraically, even when the voltages themselves are assigned randomly. Moreover, the theory of voltage graphs provides insight to designing lifts of graphs with particular properties. In this paper we illustrate how the properties of the derived graphs and the corresponding codes relate to the voltage assignments. In particular, we present a construction of LDPC codes by giving an algebraic method of choosing the permutation voltages and illustrate the usefulness of the proposed technique via simulation results.

Original languageEnglish (US)
Title of host publication46th Annual Allerton Conference on Communication, Control, and Computing
Pages1254-1261
Number of pages8
DOIs
StatePublished - 2008
Event46th Annual Allerton Conference on Communication, Control, and Computing - Monticello, IL, United States
Duration: Sep 24 2008Sep 26 2008

Publication series

Name46th Annual Allerton Conference on Communication, Control, and Computing

Other

Other46th Annual Allerton Conference on Communication, Control, and Computing
Country/TerritoryUnited States
CityMonticello, IL
Period9/24/089/26/08

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software
  • Control and Systems Engineering
  • Communication

Fingerprint

Dive into the research topics of 'On codes designed via algebraic lifts of graphs'. Together they form a unique fingerprint.

Cite this