TY - JOUR
T1 - Organic dust augments nucleotide-binding oligomerization domain expression via an NF-κB pathway to negatively regulate inflammatory responses
AU - Poole, Jill A.
AU - Kielian, Tammy
AU - Wyatt, Todd A.
AU - Gleason, Angela M.
AU - Stone, Jeremy
AU - Palm, Kelsey
AU - West, William W.
AU - Romberger, Debra J.
PY - 2011/9
Y1 - 2011/9
N2 - Nucleotide-binding oligomerization domain 2 (NOD2) is involved in innate immune responses to peptidoglycan degradation products. Peptidoglycans are important mediators of organic dust-induced airway diseases in exposed agriculture workers; however, the role of NOD2 in response to complex organic dust is unknown. Monocytes/macrophages were exposed to swine facility organic dust extract (ODE), whereupon NOD2 expression was evaluated by real-time PCR and Western blot. ODE induced significant NOD2 mRNA and protein expression at 24 and 48 h, respectively, which was mediated via a NF-κB signaling pathway as opposed to a TNF-α autocrine/paracrine mechanism. Specifically, NF-κB translocation increased rapidly following ODE stimulation as demonstrated by EMSA, and inhibition of the NF-κB pathway significantly reduced ODE-induced NOD2 expression. However, there was no significant reduction in ODE-induced NOD2 gene expression when TNF-α was inhibited or absent. Next, it was determined whether NOD2 regulated ODE-induced inflammatory cytokine production. Knockdown of NOD2 expression by small interfering RNA resulted in increased CXCL8 and IL-6, but not TNF-α production in response to ODE. Similarly, primary lung macrophages from NOD2 knockout mice demonstrated increased IL-6, CXCL1, and CXCL1, but not TNF-α, expression. Lastly, a higher degree of airway inflammation occurred in the absence of NOD2 following acute (single) and repetitive (3 wk) ODE exposure in an established in vivo murine model. In summary, ODE-induced NOD2 expression is directly dependent on NF-κB signaling, and NOD2 is a negative regulator of complex, organic dust-induced inflammatory cytokine/chemokine production in mononuclear phagocytes.
AB - Nucleotide-binding oligomerization domain 2 (NOD2) is involved in innate immune responses to peptidoglycan degradation products. Peptidoglycans are important mediators of organic dust-induced airway diseases in exposed agriculture workers; however, the role of NOD2 in response to complex organic dust is unknown. Monocytes/macrophages were exposed to swine facility organic dust extract (ODE), whereupon NOD2 expression was evaluated by real-time PCR and Western blot. ODE induced significant NOD2 mRNA and protein expression at 24 and 48 h, respectively, which was mediated via a NF-κB signaling pathway as opposed to a TNF-α autocrine/paracrine mechanism. Specifically, NF-κB translocation increased rapidly following ODE stimulation as demonstrated by EMSA, and inhibition of the NF-κB pathway significantly reduced ODE-induced NOD2 expression. However, there was no significant reduction in ODE-induced NOD2 gene expression when TNF-α was inhibited or absent. Next, it was determined whether NOD2 regulated ODE-induced inflammatory cytokine production. Knockdown of NOD2 expression by small interfering RNA resulted in increased CXCL8 and IL-6, but not TNF-α production in response to ODE. Similarly, primary lung macrophages from NOD2 knockout mice demonstrated increased IL-6, CXCL1, and CXCL1, but not TNF-α, expression. Lastly, a higher degree of airway inflammation occurred in the absence of NOD2 following acute (single) and repetitive (3 wk) ODE exposure in an established in vivo murine model. In summary, ODE-induced NOD2 expression is directly dependent on NF-κB signaling, and NOD2 is a negative regulator of complex, organic dust-induced inflammatory cytokine/chemokine production in mononuclear phagocytes.
KW - Airway
KW - Chemokines
KW - Cytokines
KW - Grampositive components
KW - Inflammation
KW - Monocyte/macrophage
KW - Organic dust extract
KW - Pathogen-associated molecular patterns
KW - Pattern recognition receptor
KW - Swine/hog/pig
KW - siRNA
UR - http://www.scopus.com/inward/record.url?scp=80052361740&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052361740&partnerID=8YFLogxK
U2 - 10.1152/ajplung.00086.2011
DO - 10.1152/ajplung.00086.2011
M3 - Article
C2 - 21665963
AN - SCOPUS:80052361740
SN - 1040-0605
VL - 301
SP - L296-L306
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 3
ER -