TY - GEN
T1 - Particle Swarm Optimized Federated Learning for Industrial IoT and Smart City Services
AU - Qolomany, Basheer
AU - Ahmad, Kashif
AU - Al-Fuqaha, Ala
AU - Qadir, Junaid
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/12
Y1 - 2020/12
N2 - Most of the research on Federated Learning (FL) has focused on analyzing global optimization, privacy, and communication, with limited attention focusing on analyzing the critical matter of performing efficient local training and inference at the edge devices. One of the main challenges for successful and efficient training and inference on edge devices is the careful selection of parameters to build local Machine Learning (ML) models. To this aim, we propose a Particle Swarm optimization (PSO)-based technique to optimize the hyperparameter settings for the local ML models in an FL environment. We evaluate the performance of our proposed technique using two case studies. First, we consider smart city services, and use an experimental transportation dataset for traffic prediction as a proxy for this setting. Second, we consider Industrial IoT(IIoT) services, and use the real-time telemetry dataset to predict the probability that a machine will fail shortly due to component failures. Our experiments indicate that PSO provides an efficient approach for tuning the hyperparameters of deep Long short-term memory (LSTM) models when compared to the grid search method. Our experiments illustrate that the number of client-server communication rounds to explore the landscape of configurations to find the near-optimal parameters are greatly reduced (roughly by two orders of magnitude needing only 2%-4% of the rounds compared to state of the art non-PSO-based approaches). We also demonstrate that utilizing the proposed PSO-based technique to find the near-optimal configurations for FL and centralized learning models does not adversely affect the accuracy of the models.
AB - Most of the research on Federated Learning (FL) has focused on analyzing global optimization, privacy, and communication, with limited attention focusing on analyzing the critical matter of performing efficient local training and inference at the edge devices. One of the main challenges for successful and efficient training and inference on edge devices is the careful selection of parameters to build local Machine Learning (ML) models. To this aim, we propose a Particle Swarm optimization (PSO)-based technique to optimize the hyperparameter settings for the local ML models in an FL environment. We evaluate the performance of our proposed technique using two case studies. First, we consider smart city services, and use an experimental transportation dataset for traffic prediction as a proxy for this setting. Second, we consider Industrial IoT(IIoT) services, and use the real-time telemetry dataset to predict the probability that a machine will fail shortly due to component failures. Our experiments indicate that PSO provides an efficient approach for tuning the hyperparameters of deep Long short-term memory (LSTM) models when compared to the grid search method. Our experiments illustrate that the number of client-server communication rounds to explore the landscape of configurations to find the near-optimal parameters are greatly reduced (roughly by two orders of magnitude needing only 2%-4% of the rounds compared to state of the art non-PSO-based approaches). We also demonstrate that utilizing the proposed PSO-based technique to find the near-optimal configurations for FL and centralized learning models does not adversely affect the accuracy of the models.
KW - Deep Learning
KW - Federated Learning
KW - IoT
KW - Parameter optimization
KW - Particle Swarm optimization
KW - Smart Services
UR - http://www.scopus.com/inward/record.url?scp=85100376732&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100376732&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM42002.2020.9322464
DO - 10.1109/GLOBECOM42002.2020.9322464
M3 - Conference contribution
AN - SCOPUS:85100376732
T3 - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
BT - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Global Communications Conference, GLOBECOM 2020
Y2 - 7 December 2020 through 11 December 2020
ER -