TY - JOUR
T1 - Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries
AU - Kamenskiy, Alexey V.
AU - Pipinos, Iraklis I.
AU - Dzenis, Yuris A.
AU - Lomneth, Carol S.
AU - Kazmi, Syed A.Jaffar
AU - Phillips, Nicholas Y.
AU - MacTaggart, Jason N.
N1 - Funding Information:
The authors wish to acknowledge Mark Pemberton for his help with data collection. This work was supported in part by NIH grant R01AG034995 , and by grants from the Nebraska Research Initiative Nanofiber Core Facility , the National Science Foundation , the UNL/UNMC Engineering for Medicine initiative , and the Charles and Mary Heider Fund for Excellence in Vascular Surgery.
PY - 2014/3
Y1 - 2014/3
N2 - Surgical and interventional therapies for atherosclerotic lesions of the infrainguinal arteries are notorious for high rates of failure. Frequently, this leads to expensive reinterventions, return of disabling symptoms or limb loss. Interaction between the artery and repair material likely plays an important role in reconstruction failure, but data describing the mechanical properties and functional characteristics of human femoropopliteal and tibial arteries are currently not available. Diseased superficial femoral (SFA, n = 10), popliteal (PA, n = 8) and tibial arteries (TA, n = 3) from 10 patients with critical limb ischemia were tested to determine passive mechanical properties using planar biaxial extension. All specimens exhibited large nonlinear deformations and anisotropy. Under equibiaxial loading, all arteries were stiffer in the circumferential direction than in the longitudinal direction. Anisotropy and longitudinal compliance decreased distally, but circumferential compliance increased, possibly to maintain a homeostatic multiaxial stress state. Constitutive parameters for a four-fiber family invariant-based model were determined for all tissues to calculate in vivo axial pre-stretch that allows the artery to function in the most energy efficient manner while also preventing buckling during extremity flexion. Calculated axial pre-stretch was found to decrease with age, disease severity and more distal arterial location. Histological analysis of the femoropopliteal artery demonstrated a distinct sub-adventitial layer of longitudinal elastin fibers that appeared thicker in healthier arteries. The femoropopliteal artery characteristics and properties determined in this study may assist in devising better diagnostic and treatment modalities for patients with peripheral arterial disease.
AB - Surgical and interventional therapies for atherosclerotic lesions of the infrainguinal arteries are notorious for high rates of failure. Frequently, this leads to expensive reinterventions, return of disabling symptoms or limb loss. Interaction between the artery and repair material likely plays an important role in reconstruction failure, but data describing the mechanical properties and functional characteristics of human femoropopliteal and tibial arteries are currently not available. Diseased superficial femoral (SFA, n = 10), popliteal (PA, n = 8) and tibial arteries (TA, n = 3) from 10 patients with critical limb ischemia were tested to determine passive mechanical properties using planar biaxial extension. All specimens exhibited large nonlinear deformations and anisotropy. Under equibiaxial loading, all arteries were stiffer in the circumferential direction than in the longitudinal direction. Anisotropy and longitudinal compliance decreased distally, but circumferential compliance increased, possibly to maintain a homeostatic multiaxial stress state. Constitutive parameters for a four-fiber family invariant-based model were determined for all tissues to calculate in vivo axial pre-stretch that allows the artery to function in the most energy efficient manner while also preventing buckling during extremity flexion. Calculated axial pre-stretch was found to decrease with age, disease severity and more distal arterial location. Histological analysis of the femoropopliteal artery demonstrated a distinct sub-adventitial layer of longitudinal elastin fibers that appeared thicker in healthier arteries. The femoropopliteal artery characteristics and properties determined in this study may assist in devising better diagnostic and treatment modalities for patients with peripheral arterial disease.
KW - Biaxial mechanical properties
KW - Constitutive modeling
KW - Femoropopliteal artery
KW - In vivo axial pre-stretch
KW - Tibial artery
UR - http://www.scopus.com/inward/record.url?scp=84895067944&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84895067944&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2013.12.027
DO - 10.1016/j.actbio.2013.12.027
M3 - Article
C2 - 24370640
AN - SCOPUS:84895067944
SN - 1742-7061
VL - 10
SP - 1301
EP - 1313
JO - Acta Biomaterialia
JF - Acta Biomaterialia
IS - 3
ER -