Abstract
Background: Previous studies have shown that Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Beta (PGC-1β) and Estrogen-Related Receptor Alpha (ERRα) are over-expressed in colorectal cancer and promote tumor survival. Methods: In this study, we use immunoprecipitation of epitope tagged endogenous PGC-1β and inducible PGC-1β mutants to show that amino acid motif LRELL on PGC-1β is responsible for the physical interaction with ERRα and promotes ERRα mRNA and protein expression. We use RNAsequencing to determine the genes regulated by both PGC-1β & ERRα and find that mitochondrial Phosphoenolpyruvate Carboxykinase 2 (PCK2) is the gene that decreased most significantly after depletion of both genes. Results: Depletion of PCK2 in colorectal cancer cells was sufficient to reduce anchorage-independent growth and inhibit glutamine utilization by the TCA cycle. Lastly, shRNA-mediated depletion of ERRα decreased anchorage-independent growth and glutamine metabolism, which could not be rescued by plasmid derived expression of PCK2. Discussion: These findings suggest that transcriptional control of PCK2 is one mechanism used by PGC-1β and ERRα to promote glutamine metabolism and colorectal cancer cell survival.
Original language | English (US) |
---|---|
Article number | 4879 |
Journal | Cancers |
Volume | 14 |
Issue number | 19 |
DOIs | |
State | Published - Oct 2022 |
Keywords
- ERRα
- K-Ras
- PCK2
- PGC-1β
- colorectal cancer
- metabolism
- precision medicine
ASJC Scopus subject areas
- Oncology
- Cancer Research